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Ethiopia is a key maize producer in Africa. Over the previous two decades, Ethiopia's maize sector has seen 

tremendous development. Farmers in Ethiopia demand a continual supply of novel and improved varieties to satisfy 

their ever-changing production and marketing difficulties. Breeders can no longer function without the analysis of 

multi-environment trials (MET) for varietal evaluation. To reliably choose better varieties that boost agricultural 

production, efficient statistical methods for maize variety evaluation must be used. This study used multiplicative 

mixed models to analyze data from multi-environment trials in order to identify outstanding maize varieties based on 

yield performance. In this study, 32 maize varieties, including four checks, were sown across seven major maize 

growing areas in Ethiopia using RCB design, with three replications during the main cropping season in 2020. The 

findings showed that factor analytic models were a successful approach for maize MET data analysis under the linear 

mixed model. The examined FA models have better data fitting, which significantly improves heritability. 

SXM1910008 and SXM1910007 showed good yield performance over correlated locations, including Ambo, Bako, 

Hawasa, and Wondogenet, and were therefore identified as potentially useful stable genotypes with a wide range of 

adaptability. This is because the improved analysis technique we used here showed that correlated locations were the 

basis for genotype selection. Data from multi-environment trials can be analyzed to provide a more reliable 

framework for evaluating maize varieties, giving breeders more confidence to select superior varieties for a wide 

range of environments. This can be done by using more efficient statistical models. In order to improve the selection 

of better varieties in the maize breeding program, it is vital to increase the usage of this efficient analysis technique. 
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Introduction 
 

The second most commonly grown crop across the world is maize. Between 2007 and the year 2022, maize area 

coverage in sub-Saharan Africa (SSA) expanded by approximately 66 percent. Maize grain yields in all nations have 

increased by over twofold, from around 1.6 t/ha in 1990 to 4 t/ha in the past decade, which is the highest in the region 

after South Africa (FAOSTAT, 2022). Maize takes up over fifty percent of the land used for grain production in the 

majority of SSA nations (Masuka et al., 2017). The economic well-being and food security of many millions of 

households in SSA depend on maize, which makes it a crucial grain (Fisher et al., 2015). Maize supplies 43 percent 

of protein and 45 percent of the total number of calories found in grains in eastern and southern Africa (Shiferaw et 

al., 2011). SSA still has the lowest maize yields worldwide, despite the crop's significance to the area (Masuka et al., 

2017). Among all the grains, maize ranks second in area coverage (>2.5 million hectares), first in total output (> 10.5 

million tons), and first in grain yield (4.18 t/ha) in Ethiopia (CSA, 2022). Africa's largest producer of maize is 

Ethiopia. Over the past 20 years, Ethiopia's maize industry has undergone a substantial development. Improved 

hybrid seeds and inorganic fertilizers are just two examples of modern inputs that are more readily available and used, 

together with enhanced extension services and rising demand (Abate et al., 2015). Due to an absence of well-adapted 

and improved cultivars, Ethiopia's national average maize grain yield is still quite low compared to the crop's 
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potential and the global average (Wolde et al., 2020). Mulatu et al. (1993) stated that maize can adapt to a broad range 

of environmental conditions and has been produced all over Ethiopia, from lowland areas with moisture stress to 

high-rainfall locations and everywhere in between. Maize is cultivated across a range of environments, and different 

maize varieties exhibit varying degrees of environmental adaptation. These variations are principally influenced by 

flowering time, abiotic stress tolerance, and disease resistance (Mercer & Perales, 2019). Ethiopia has a wide variety 

of climate zones, from highland regions to lowland deserts, semi-arid zones to temperate zones. Because of this, the 

grain production of various maize varieties may change depending on the environment. This indicates that plant 

output may change from one environment to the next since different genotypes will not always express their genetic 

potential in the same way under varied environmental conditions. In Ethiopia and other nations where the 

environment is extremely unpredictable and there are few effective ways to change it, performance stability is also of 

particular importance. In small-scale agricultural systems, poor genotype turnover and genotype-environment (GE) 

interaction are also major contributors to low yield (Abakemal et al., 2016; Wolde et al., 2020). Breeders must analyse 

multi-environment trials (MET) in order to evaluate genotype performance. Each genotype responds differently to 

changing climatic and soil circumstances; some show significant GE interaction while others show low GE 

interaction. Other researcher (Solomon Admassu et al., 2008) has looked at the estimation of G x E interaction and 

yield stability study of Ethiopian maize depending on the classical statistical way of analysis. Numerous G x E studies 

on Ethiopian maize genotypes have been conducted to increase information on the environmental and genetic factors 

causing the association, as well as an assessment of their value in the relevant G x E system, which could have 

substantial effects on plant breeding and genetic variation. Various research institutes have generated and assessed 

numerous maize hybrid genotypes in various places, but the majority of them were unable to adapt due to climate 

change effects and the changing patterns of the growing environment (Wolde et al., 2018; Solomon Admassu et al., 

2008; Abate, 2020). In order to accurately choose superior varieties that increase agricultural production, the novel 

hybrids should be tested in multiple locations to ensure their broad adaptability. MET analysis using effective 

statistical methodologies must also be employed for maize variety testing. Ordinary linear models (LMs), which use 

ordinary least square (OLS) techniques of estimation for unknown parameters, are used to estimate the analysis of 

variance (ANOVA), a common technique frequently used to analyse MET data sources. The following methods are 

used in this strategy: Duncan testing for observed means, post hoc multiple comparisons testing with largely list 

significance difference (LSD), and an ANOVA table for source of variation testing with overall f-test. In order to 

further analyse the genotype by environment interaction (GEI) component, multivariate analysis methods like GGE 

(genotype and genotype by environment interaction) and AMMI (additive main effects and multiplicative interaction) 

are employed (Rodrigues, 2018; Yan & Tinker, 2006). This method had a major weakness in that it was unable to 

manage error variance heterogeneity across experiments, spatial variation within trials, imbalanced data, and missing 

values, as various authors (Gogel et al., 2018; Smith et al., 2005) pointed out. The linear mixed model (LMM), an 

extended linear model, can account for confounded factors in the experimental units by incorporating fixed and 

random terms into the model for systematic variability and relaxing the distributional assumptions surrounding the 

residual error (Kelly et al., 2007; Smith et al., 2005). According to Yang (2010), the LMM is a potent and powerful 

statistical model that allows for the computation of BLUPs (best linear unbiased predictions) for random effects as 

well as unbiased estimates of the variance component using REML (restricted maximum likelihood estimation) for 

random terms (Yang, 2010). LMMs can be used for both balanced and unbalanced field trial data, as well as for 

extended analysis with factor analytic models (Smith & Cullis, 2018). By shrinking the estimates of genotype effects 

closer to their true value, MET data analysis under LMM with random genotype could increase the precision for 

genotype ranking. Through FA models, the covariance structure of GE effects has been further improved. The Bako 

national maize research program regularly generates and evaluates novel maize hybrids that adapt to Ethiopia's mid-

altitude subhumid and transitional highland maize growing areas. Although maize has many advantages, some of the 

challenges include biotic and abiotic stress, which confronts the breeder when developing improved varieties. Thus, 

this study was planned to evaluate the performance of promising maize varieties that might suit the local and regional 

market through data analysis of MET using more efficient statistical methods. 

 

Materials and methods 
 

Experimental sites, experimental design and crop management 

 

Seven sites, which were chosen to reflect the main maize-growing agro-ecologies in Ethiopia, were used for the 

experiment. These locations vary in altitude, temperature, total annual rainfall and soil types (Table 1) and the 

locations represent the main maize-producing agro-ecologies of the country ranging from mid-altitude sub-humid to 

transitional high land sub-humid. 
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Table 1. Description of the study locations 

Location Altitude  (m.a,s.l) Soil type Rainfall (mm) Geographical position Temperature 

Latitude Longitude Max(°C) Min(°C) 

Bako 1650 Nitisol 1598 9° 06’ 37°09’ 29 12.78 

Asosa 1547 Nitisol 1276.2 10° 02ˈ 34° 31’ 33 21 

Jimma 1753 Nitosol 1561 7° 46’ 36° 00’ 23 18 

Pawe 1120 Nitisol 1250 11°19’ 36° 24’ 32.6 16.5 

Wondo Genet 1780 Alluvial  1128 7° 19’ 38° 38’ 26 11 

Ambo 2175 Vertisol 1265.7 8o 57’ 37o 51’ 25.6 11.7 

Hawasa 1650 Sandy loam 959 7o 03’ 38o 30’ 26.9 12.4 

Source: Ethiopian institute of agricultural research (2019) 

  

Thirty-two maize genotype with four commercial checks (BH546, BH547, BH661 and Limu) were evaluated in the 

multi-location trial (Table 2). These hybrids were developed or adapted by the National Maize Research Program 

based at the Bako Agricultural Research Centre (BARC).  

 

Table 2. Maize hybrids tested across six locations in 2020 main growing season. 

Entry    Hybrids Pedigree Source 

1 WE6103 CKDHL0089/CML395//CKLTI0036-B-B CIMMYT  

2 WE7124 CKDHL0089/CKDHL0295//CKLTI0348-B-B CIMMYT  

3 CZH15568 CZH15568 CIMMYT  

4 WE2108 CML312/CML442//CKDHL0411-B-B-B CIMMYT  

5 CZH15587 CZH15587 CIMMYT  

6 WE7117 CKLTI0139/CKLMARSI0029//CKDHL120312-B-B-B CIMMYT  

7 BH 661 CML395/CML202//142-1-e Bako  

8 SXM1910008 BKL004/BKL003 Bako  

9 BH 546 CML395/CML202/BKL001 Bako  

10 BH 547 CML312BK/BKL002/BKL003 Bako  

11 SXM1910173 SC22/124- b (113) Bako  

12 Limu Limu Pioneer 

13 WE3105 CML444/CML442//CKDHL0295-B-B-B CIMMTY 

14 CZH15523 CZH15523 CIMMTY 

15 3XM1900476 CML488/CML489/CML536 Bako 

16 SXM1910007 CML444/CML536 Bako 

17 WE3106 CML312/CML395//CKDHL0089-B-B-B CIMMYT 

18 WE7131 CKDHL0089/CKDHL0323//CKLTI0045-B-B CIMMYT 

19 WE7126 CML395/CML444//CKLTI0348-B-B CIMMYT 

20 WE7119 CKDHL0500/CKLTI0137//CKDHL120312-B-B-B CIMMYT 

21 WE7128 CKDHL0089/CML395//CKLTI0368-B-B-B CIMMYT 

22 WE1101 CML395/CML444//CML539-B-B-B CIMMYT 

23 WE6105 CKDHL0089/CKDHL0295//CKLTI0344-B-B CIMMYT 

24 WE6106 CKDHL0089/CKDHL0323//CKLTI0200-B-B-B CIMMYT 

25 3XM1910230 - CIMMYT 

26 CZH 131009 - CIMMYT 

27 CZH 131010 - CIMMYT 

28 CZH 131013 - CIMMYT 

29 CZH 131015 - CIMMYT 

30 CZH 132080 - CIMMYT 

31 CZH 141029 - CIMMYT 

32 WE2109 - CIMMYT 

 

During the main farming season of 2020, a Randomized Complete Block Design (RCBD), with three replications was 
employed to conduct the study. Each hybrid was planted in a two-row plot that was 5 m long, with 0.75 m between 

rows and 0.25 m between plants within a row. Two seeds per hill for each genotype were sown to achieve the 

recommended total plant population of 53,000 plants per hectare, which was then reduced to one plant at three to four 
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leaf stages. To ensure excellent germination and seedling growth and development, planting took place as soon as the 

main rainy season began, and the soil moisture level was sufficient. According to the recommendation, NPS fertilizer 

at a rate of 150 kg/ha was applied once during planting time at all locations, whereas urea at a rate of 200 kg/ha at 

Ambo and Pawe and 250 kg/ha at Hawassa, Bako, Wendo Genet, Jima, and Asosa was used in split doses, with half 

being applied at thinning and the other half at knee height. 

 

Linear mixed model (LMM) 

 

Take a look at a MET dataset that was generated using t-trials (environments might also be used) and m varieties that 

were planted (not all trials might have grown every variety). The kth trial, where k = 1...t, is made up of nk plots that 

are organized in a rectangular array with ck columns and rk rows (nk=ckrk). Let yk be the (nk x 1) data vector for trial k, 

which is arranged as rows within columns, and let y be the (n x 1) data vector combining all of the trials together. The 

LMM for y can then be written as     

 

 +++= ppgg ZZXy
                             (1)      

 

where   is vector of fixed effects (including terms for the grand mean, the environment's main effects, global spatial 

trends at each trial, and other trial-specific fixed effects) with an associated design matrix X ( assumed to be full 

column rank), g is the mt x 1 vector of random genetic ( or variety by trial) effects with associated    design matrix 

gZ
, p is a vector of  non-genetic (or peripheral) random effects ( including terms associated with the blocking 

structure at each trial, and other trial-specific random effects), with associated design matrix pZ
, and  is the n x 1 

vector of residual errors across all trials. 

The random effects from the linear mixed model (equation 1) are assumed to follow a Normal distribution with mean 

zero vector and variance-covariance matrics, and this can be written using E (expectation) and var (variance) 

functions as follow 
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where   is vector of fixed effects (including terms for the grand mean, the environment's main effects, global spatial 

trends at each trial, and other trial-specific fixed effects) with an associated design matrix X ( assumed to be full 

column rank), g is the mt x 1 vector of random genetic ( or variety by trial) effects with associated design matrix gZ

, p is a vector of  non-genetic (or peripheral) random effects ( including terms associated with the blocking structure 

at each trial, and other trial-specific random effects), with associated design matrix pZ
, and  is the n x 1 vector of 

residual errors across all trials. 

 

The random effects from the linear mixed model (equation 1) are assumed to follow a Normal distribution with mean 

zero vector and variance-covariance matrix, that is 

 

Model for Genetic Effects ( g ) 

Smith et al. (2001a) presented an alternative parsimonious model for g using a factor analytic (FA) model approach 

to provide a variance structure for the genetic variance matrix gG
. This model can adequately represent the nature of 

heterogeneous variances and covariance found to occur in most MET data. Thus, the g can be modeled with 

multiplicative terms. That is 
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where is the  vector of loadings, is the  vector of factor scores ( ),  is the  vector of 

residuals,  is the  matrix of loadings {  . . . } and  is the  vector of factor scores . 

The random effects and  are assumed to follow a Normal distribution with zero mean vector and variance-

covariance matrix 

 














m

mf

I

IG

0

0

 
 

where   is a diagonal matrix of specific variances represents the residual variance not explained by the factor 

model, that is   = diag ( 1  . . . t ). The factor scores are commonly assumed to be independent and scaled to have 

unit variance, so that fG
 = kI

.   

 

The genetic effects g  can be considered as a two dimensional (genotype by environment) array of random effects, 

and can be assumed to have a separable variance structure for the (mt × mt ) variance matrix gG
which can be written 

as  

 

vg GG = eG
 

 

where eG
 is the tt   genetic variance matrix representing the variances at each trial and covariances between trials, 

and vG
is the mm  symmetric positive definite matrix represents variances of environment effects at each genotype 

and the covariances of environment effects between genotypes. It is typically assumed that the varieties are 

independent and that mv IG =
. However, if the pedigree information of the varieties is available, other forms of vG

can be applicable (Oakey et al., 2006; 2007).  Based on equation 2 the variance of genetic effects would be 
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Thus, the FA model approach results in the following form for eG
 

 

+= 'eG
 

 

In the model, the variance parametric in these variance matrices are directly estimated using REML estimation 

method.  

 

Model for Non-genetic Effects ( p ) 

The random non-genetic effects p  can be considered as sub- vectors 

)1( jb

pj
for each trial, where j

b
 is the number 

of random terms for trial j.  These random terms are based on terms for blocking structure (replicate blocks or other 

terms). In the analysis of MET data, the sub-vectors of  p   are typically assumed to be mutually independent, with 

variance matrix pjG
for trial j, with the block diagonal form given below. Thus, there is a variance matrix for the set 

of none-genetic effects at each trial, That is, 
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The most common form for the variance matrix of these extraneous effects is a simple variance component structure,  

 

where bjjpj IG 2=
 

 

Estimation, testing and software 

 

The significance of fixed effects in a linear mixed model can be evaluated through the Wald test. The traditional Wald 

statistic follows an asymptotic chi-squared distribution, but it is often considered as overly liberal by some 

researchers (Butler et al., 2009). To address this issue, Kenward & Roger (1997) introduced an F approximation and 

an adjusted Wald statistic, which have shown good performance in various scenarios. ASReml, a software package 

implemented in the R environment, was utilized to estimate the variance parameters of the linear mixed model using 

the Restricted Maximum Likelihood (REML) method (Butler et al., 2009). The ASReml software employs the 

Average Information (AI) algorithm proposed by Gilmour et al. (1997). During the estimation process of the linear 

mixed model, the variance-covariance parameters (represented by symbols gG
, pG

and R), as well as the fixed 

effects ( ) and random effects ( g  and p ), are all estimated. This estimation process consists of two interconnected 

steps. The fixed effects are estimated using Best Linear Unbiased Estimation (BLUE), while the random effects are 

estimated using Best Linear Unbiased Prediction (BLUP). The variance parameters of the model are estimated using 

the Residual Maximum Likelihood (REML) method, as described by Patterson & Thompson (1971). To determine the 

significance of random effects in the linear mixed model, the Residual Maximum Likelihood Ratio Test (REMLRT) is 

employed. The REMLRT is used when comparing the fit of two nested models with the same fixed effects. 

  

Results and discussion 
 

G x E analysis 

 

For the G x E analysis, the FA models were taken into consideration while preserving the single stage-wise analysis 

on the individual plot yield data. The degree to which the G x E variance is explained by the factor components was 

used to evaluate the suitability of the two-factor FA model (Cullis et al., 2010). The factor analysis's findings are 

shown in Table 3. Excluding for the two trials Jimma and Asosa, nearly all of the trials were largely explained by the 

FA models, and the two factor components gave admirable explanation to the genetic variance. This comprises the 

total proportion of (G x E) variation explained by the factor components of the model for both the individual trials as 

well as the entire sample of trials. Due to the insufficient dataset fit, the factor analytic model was not taken into 

account for more than two factors. The two multiplicative terms of the FA model explained nearly seventy percent of 

the variance in the G x E effects, with the first multiplicative term accounting for fifty-three percent of that variance.  

Table 3. Results from fitting FA model.  
Factor1 Factor2 All 

Ambo 99.5 0.5 100 

Asosa 22.69 1.47 24.15 

Bako 73.48 1.05 74.53 

Hawasa 80.24 19.76 100 

Jimma 18.88 4.98 23.86 

Pawe 0.02 70.33 70.35 

Wondogenet 61.55 2.17 63.72 

%var FA-1= 53.51, % var FA-2=70.19 
 

%varFA-1= percentage of GxE variance explained from fitting FA model with a single factor; %var FA-1=percentage 

of GxE variance explained from fitting FA model with two factors. 
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The FA models do not adequately explain Assosa and Jimma, which can occur because these trials lack correlation 

with the other trials or are unique in comparison to the others. 

 

 
Figure 1. Dendrogram of the dissimilarity matrix (a) and heatmap representation of the genetic correlation 

matrix (b).  

 

Factor analysis also produces another important summary of statistics when cluster analysis is performed using a 

dendrogram. The cluster analysis grouped the trials according to how environmentally related they were using the 

dendrogram in Figure 1(a). According to Cullis et al. (2010) estimate of the variation cut-off (around about 0.6) at 

which clusters form, the dendrogram shows that there may be three clusters of trials, with the first cluster having a 

maximum of four trials. This demonstrates that, whereas genotype rankings differ for trials located in different 

clusters, they are substantially the same for trials located inside these established clusters. Given that the produced 

clusters are logically reasonable for doing genotype selection independently for every one of the clusters, genotype 

selection was performed for each cluster individually utilizing average BLUPs as a selection index. A heatmap 

depicting the genetic links among all trials is another popular component of factor analysis reports, in addition to the 

dendrogram. The correlation patterns between trials are shown in Figure 1(b), which illustrates the similarity of the 

trials. Only a few of the trials had a poor correlation, as evidenced by the heatmap, which reveals that the majority of 

the trials are highly connected. This suggests that almost all of the trials in the first cluster with the red hue can be 

used to average genotype means for genotype selection. Additionally, there are trials with a negative genetic 

association, such as the one between Pawe and Hawasa (Table 4), which suggests that genotype rankings may have 

reversed in these trials.  

Table 4.  Genetic correlation between environments  
Ambo Asosa Bako Hawasa Jimma Pawe Wondogenet 

Ambo 1 
      

Asosa 0.48 1 
     

Bako 0.86 0.42 1 
    

Hawasa 0.86 0.37 0.72 1 
   

Jimma 0.45 0.23 0.40 0.3 1 
  

Pawe 0.08 0.11 0.10 -0.4 0.19 1 
 

Wondogenet 0.79 0.39 0.69 0.6 0.37 0.14 1 
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Figure 2.  Bi-plot analysis 

 

The biplot in Figure 2 shows the concept of genotype performance, consistency across environments, and the 

discriminating abilities of each trial. The trials that have a lengthy arm from the bi-plot's centre have comparatively 

strong genotype discrimination power compared to the others and show a large genetic variance (Tesfaye et al., 2023). 

In comparison with the other location, Pawe, Hawasa, and Bako thus showed higher genetic variance. As a result, we 

evaluated three Clusters of trials (C1, C2, and C3), with Ambo, Bako, Hawasa, Wendogenet, and Assosa residing on 

C1, Jimma residing on C2, and Pawe residing on C3. These trials were grouped together based on the dendrogram 

and heatmap in Figure 1, the bi-plot in Figure 2, and the genetic association as well from Table 4. In this study, we 

ranked average BLUPs within clusters as a selection index to choose superior and stable varieties, focusing on the 

first cluster (C1) being utilized for selection because it has a comparatively higher correlation of trials. 

 

Variance components  

 

The REML estimation produces unbiased and efficient estimates for variance component parameters at each trial 

(Smith et al., 2005). Table 5 shows the genetic variance, error variance, and heritability from the final fitted FA model 

for each trial. Variance component parameter estimates range from 0.52 to 1.78 for genetic variance, 0.56 to 3.33 for 

error variance, and 62.05 to 90.92 for heritability. Bako had more genetic variation. This indicates that the genotype 

discrimination power at these testing sites was relatively high.  

 

Table 5. Variance component results MET analysis using FA models  
Genetic variance Error variance Heritability 

Ambo 1.00 0.56 90.92 

Asosa 0.52 0.68 73.32 

Bako 1.78 3.33 77.26 

Hawasa 1.22 1.40 84.75 

Jimma 0.94 2.28 62.05 

Pawe 1.35 1.55 75.29 

Wondogenet 1.05 0.59 86.99 

 

This could be attributed to Bako's significantly higher rainfall amounts and distribution during that growing season. 

This highlights the value of using meteorological information from a given cropping season to suggest the best 



9 
 

www.cornous.com 

genotype for that cropping season as well as its wider application to the various agro-ecologies across the country. 

Plant breeders commonly measure both narrow and broad sense heritability on a genotype-mean basis to quantify and 

finally assess the accuracy of METs. The latter is the portion of phenotypic variability that can be attributed to the 

total genotype variability, which includes additive, dominance, and epistatic variability. The accuracy of a single field 

experiment or a series of field trials is frequently evaluated by plant breeders using the heritability approach (Piepho 

& Möhring, 2007). The preferred models for plant breeding field trial data analysis are linear models. When the 

underlying assumptions of classic regression models are violated, however, these models often perform poorly and 

produce misleading parameter estimates (Cullis et al., 2010; Smith et al., 2005). This typically happens when the data 

is incomplete, imbalanced, and filled by outliers. Due to these issues, estimates of the heritability and prediction 

power of genetic and non-genetic effects are inaccurate. Robust statistical techniques offer a theoretically sound and 

intuitively appealing framework for getting around some of the limitations of traditional analysis, most notably its 

limitation in the analysis of incomplete and correlated MET data (Having a precise and accurate understanding of 

heritability is essential for the plant breeding program to be successful. Learning more about the genetic components 

that contribute to significant character variations is of primary interest to plant breeders. Due to this, it is essential 

from the perspective of plant breeding programs to quantify various genetic variances and make decisions regarding 

their inheritance based on estimates of various genetic characteristics acquired by using reputable statistical 

techniques like FA mixed mode statistics. So, using both randomized complete block (RCB) and FA analysis, Figure 3 

illustrates the heritability of yield at each trial. It demonstrates how applying FA analysis strengthens heredity. By 

properly utilizing the data recorded in the MET dataset, processing this dataset with factor analytic model often 

increases genotype generation precision and accuracy (Smith & Cullis, 2018; Cullis et al., 2010). 

 

Best linear unbiased prediction (BLUPs) for genotypes across trials 

 

A commonly used technique for calculating random effects in a mixed model is the BLUP approach. BLUPs have the 

property of a minimum mean square error of prediction, which allows them to create a more accurate estimation of 

the underlying effects Genotype effects are generally fitted as random factors in the context of plant breeding, where 

precise genotype ranking is essential for the selection of superior genotypes (Piepho & Möhring, 2007). This is 

especially important for early generation trials with a large number of entries. Genotype performance can be graded 

based on the averaged values of BLUPs across the correlated environments of the first cluster (C1), excluding Jimma 

and Pawe because they are in distinct clusters. More than 31% (10) of the 32 genotypes had average grain yields that 

were more than 6.5 t/ha, as shown in Table 6.  

 

 
Figure 3. Improvements in heritability through the applications of FA models 

 

Table 6. BLUPs for genotype means across clusters of correlated environments (C1) 

Genotype Ambo Bako Hawasa Wondogenet Asosa Jimma Pawe Average at C1 

SXM1910008 8.91 10.91 6.29 5.70 6.97 7.40 4.53 7.95 

BH661 9.33 11.43 5.78 5.44 6.91 7.68 6.34 7.78 

SXM1910007 8.76 11.32 4.78 5.38 6.67 8.03 7.35 7.56 
Limu 8.46 10.44 4.35 5.49 6.83 6.37 8.22 7.19 

3XM1900476 8.38 10.51 4.72 4.53 6.49 7.27 6.93 7.04 

3XM1910230 8.12 9.97 4.75 5.00 6.77 7.66 6.38 6.96 

BH546 8.27 10.50 5.01 3.52 6.51 7.08 6.14 6.82 
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CZH 131013 8.06 9.52 4.99 4.42 6.54 7.11 5.83 6.75 

CZH15523 8.27 10.33 4.12 4.21 7.53 7.94 7.58 6.73 

WE7119 8.04 9.99 4.11 4.48 6.30 7.41 7.81 6.66 

BH547 7.75 10.17 4.37 3.66 7.38 6.98 5.74 6.49 

WE6106 7.87 9.35 3.43 5.10 7.31 7.24 8.55 6.44 

WE2109 7.89 9.93 3.69 4.20 5.72 7.22 8.10 6.43 

WE6103 7.49 9.25 4.05 4.86 6.15 7.98 5.98 6.42 

CZH15587 7.55 9.67 4.10 3.42 6.04 6.62 6.29 6.19 

WE1101 7.50 9.12 3.68 4.27 6.75 6.31 7.56 6.14 

WE3105 7.19 9.26 3.51 4.45 5.80 7.63 6.93 6.10 

WE7117 7.13 8.94 3.20 4.55 5.63 6.75 6.99 5.96 

WE7131 7.32 9.59 2.93 3.93 7.15 8.23 8.24 5.94 

WE3106 7.15 9.65 2.85 3.91 7.18 7.83 7.89 5.89 

CZH 141029 7.28 8.83 3.17 4.13 6.38 7.12 8.00 5.85 

WE2108 6.88 8.99 3.73 3.24 5.85 7.43 5.52 5.71 

CZH15568 6.92 9.09 3.36 3.20 5.60 6.49 7.08 5.64 

WE6105 6.99 8.45 2.95 3.80 6.37 7.88 7.80 5.55 

WE7126 6.66 8.72 3.25 3.21 6.50 6.01 6.14 5.46 

WE7124 6.71 8.61 2.99 3.44 5.90 6.04 7.27 5.44 

WE7128 6.49 8.66 2.53 3.22 5.72 6.27 7.53 5.23 

CZH 131015 6.26 7.45 2.42 3.46 6.00 6.61 7.17 4.90 

CZH 131009 6.12 8.00 2.25 2.62 5.71 6.56 7.27 4.75 

CZH 131010 6.00 7.48 2.50 2.87 5.40 6.38 6.38 4.71 

CZH 132080 5.77 7.60 2.33 1.94 5.79 6.27 6.23 4.41 

SXM1910173 5.50 6.20 2.68 2.21 6.30 5.41 5.00 4.15 

 

The estimated mean grain yield, however, revealed two genotypes that had a greater mean yield throughout trials in 

the first cluster (C1): one is SXM1910008, and the other is the check, BH661 (Table 6). BLUP analysis also revealed 

that these two genotypes did poorly at Asosa, Jimma, and Pawe, implying that these sites were not found to be ideal 

for selecting maize genotypes for this study. According to the enhanced method of analysis we used here, cluster one 

(Cl) would be the basis for genotype selection, and thus the genotypes SXM1910008 and SXM1910007 had good 

yield performance over correlated trials, Ambo, Bako, Hawasa, and wondogenet, and can potentially be used as stable 

genotypes with broad adaptability. 

 

Conclusion 
 

Farmers in Ethiopia require a steady supply of new and improved varieties to help them meet their constantly 

changing production and marketing challenges. Breeders no longer can function without the analysis of multi-

environment trials (MET) for varietal evaluation. Each cultivar responds differently to shifting climatic and soil 

conditions; some show high GE interaction while others show low GE interaction. ANOVA-based techniques might 

not be useful for assessing MET data because it isn't always balanced and/or comprehensive. The linear mixed model 

relaxes the ANOVA distributional assumptions about the residual error and offers a robust framework for handling 

unbalanced and/or incomplete data. The linear mixed model with the FA models showed to be an effective data 

analysis technique for this investigation. The evidence of heredity measure reveals that the multiplicative mixed 

model analysis considerably enhances the findings of the MET data analysis. The analysis has improved because the 

GE effects are now modelled using FA models. The investigated FA models exhibit improved data fitting, resulting in 

a significant improvement in heritability. SXM1910008 and SXM1910007 were found to be potentially useful as 

stable genotypes with a wide range of adaptability because they demonstrated good yield performance over correlated 

locations, including Ambo, Bako, Hawasa, and Wondogenet. This is due to the fact that the enhanced method of 

analysis we employed here revealed that correlated locations served as the base for genotype selection. 
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