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Arsenic is found globally in both freshwater and marine ecosystems, posing a threat to aquatic life. It exists in organic
and inorganic forms, with the inorganic variant being more toxic. While most water bodies contain inorganic arsenic,
organic forms are often prevalent in fish. Both natural and human activities contribute to arsenic contamination in water.
The bioaccumulation of arsenic and its transfer through the aquatic food chain highlight its significance as an
environmental concern. Prolonged exposure to low levels of arsenic in fish can lead to accumulation, impacting higher
trophic levels, including larger fish and humans who consume them. This review aims to enhance our understanding of
arsenic sources, its bioaccumulation, food chain transfer, and effects on fish health. It underscores the urgent need to tackle
arsenic contamination in water bodies to protect aquatic ecosystems and the well-being of wildlife and human populations
reliant on these resources.
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Introduction

Arsenic threatens aquatic life in both freshwater and marine ecosystems. It exists in organic, inorganic forms, and arsine
gas. While most water bodies contain mainly inorganic arsenic, fish are believed to predominantly have organic arsenic
(Chandel et al., 2024). In both marine and freshwater environments, inorganic arsenic (iAs) is predominant, but aquatic
organisms convert it to methyl and organoarsenic species (Rahman et al., 2012). Despite being well-known as a cancer-
causing agent, inorganic arsenic is considered much more toxic than its organic counterpart and it can be found naturally
in water, rock and soil (Briffa et al., 2020). Whereas considerable knowledge exists about marine organisms, less is known
about freshwater organisms. Arsenic toxicity in aquatic organisms depends on its concentration and speciation. Fish are
essential to aquatic ecosystems and help mobilise arsenic. They contribute to the food chain and provide protein for human
diets. Some fish serve as bioindicators of aquatic pollutants (Kumar et al., 2018; Sharma et al., 2018). Arsenic can
accumulate in fish through the gills, skin, or by consuming prey. Studies have examined how different fish species affect
arsenic toxicity from various sources (Magellan et al., 2014). Recent years have seen an increase in arsenic contamination
of aquatic environments, primarily due to anthropogenic sources, causing adverse effects on aquatic biota. Thus, arsenic
has gained global recognition as a leading toxin and is deposited in different tissues with the greatest rate being
muscles>liver>gill (Srivastava & Prakash, 2019). So, the main objective of this study is to provide a comprehensive
understanding of arsenic toxicity in fishes, highlighting the sources of arsenic in fishes and its toxicological effect on
fishes.

Methodology

This systematic review was conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) guidelines (Sarkis-Onofre et al., 2021). Relevant literature was retrieved from major
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databases: Google Scholar, PubMed, and Scopus, encompassing studies published up to 2025. The search employed
combinations of the following keywords: “Arsenic”, “Fish health”, “Bioaccumulation”, “Biotransformation”, and
“Arsenic speciation” using Boolean operators (AND/OR) to ensure comprehensive coverage. Studies were included in
the review if they met the following criteria: published in renowned peer-reviewed journals, articles focused on
experimental or observational research related to arsenic toxicity in aquatic organisms, particularly fish, bioaccumulation,
biotransformation, or arsenic speciation in aquatic environments and Available in English. Documents such as Erratum,
editorials, letters to the editor, duplicate articles, and conference proceedings were excluded from the review (Shekhar et
al., 2024).

Data identified: 1200

Inclusion: 900
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Figure 1. Systematic literature review framework using the PRISMA methodology (Shekhar et al., 2025)
Sources of arsenic in fish

Arsenic can enter the environment through natural processes, such as leaching from bedrock aquifers and volcanic
emissions, as well as through human activities, including industrial operations and the use of fertilizers (Babich & Van
Beneden, 2019). It exists in four distinct oxidative states: arsine (As-III), arsenate (AsV), arsenite (AslIl) and elemental
arsenic (As). Among these arsenate and arsenite are the dominant forms found in the aquatic environment as they are
highly soluble in water (Byeon et al., 2021). Fishes are more susceptible to arsenic contamination because of their direct
contact with water and sediments which serve as reservoirs of heavy metal contamination including arsenic (Ali et al.,
2021). Constant exposure of arsenic to fish changes their morphology, behavior, growth pattern, histopathology and even
their molecular mechanisms (Rabbane et al., 2022).
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Sources Of Arsenic

Figure 2. Major natural and anthropogenic sources of arsenic in aquatic
(i). Natural sources

Arsenic is present in ore minerals, with arsenopyrite being the most common ore mineral, followed by orpiment and
realgar. These minerals typically form in Earth's crust under high temperature and pressure (Smedley & Kinniburgh,
2002). These mineral ores are prone to oxidation, releasing arsenic into the sediments. Further reductive dissolution of
arsenic-bearing Fe(III) oxides and sulfide oxidation releases arsenic into groundwater, which subsequently enters surface
water. The mobilisation of arsenic in groundwater is influenced by its adsorption on metal hydroxides and clay minerals
(Herath et al., 2016). Volcanic eruption and geothermal emissions also release arsenic in gaseous form as well as matter
which get transported over long distance and sooner or later it enters in aquatic environment by way of precipitation
(Bundschuh et al., 2020). Arsenic and other trace elements are released when they meet water, and once they are released,
they interact with sediments (Bia et al., 2014). Research reveals that arsenic contamination is strongly correlated with the
active plate tectonics, magmatism and hydrothermal activity. Microbial activity also increases the arsenic level by
facilitating the oxidation and reduction of arsenic minerals (Masuda, 2018). Arsenic is absorbed from (hydro)oxides (such
as iron, aluminum, and manganese oxides) and released from geothermal water because of natural geochemical processes.
There are also cases of arsenic leaching from sulfides, oxidation of arsenic-bearing sulphides, and desorption from
(hydro)oxides that contain arsenic (Malik et al., 2023).

(ii). Anthropogenic sources

Arsenic can be released into the environment by a number of human activities, including as the mining and smelting of
nonferrous metals, the processing of fossil fuels, combustion, wood preservation, the manufacture and use of pesticides
in agriculture, and the dumping and incineration of industrial and municipal trash (Alonso et al., 2020; Nasser et al., 2020;
Slimak & Delos, 1983). Coal combustion also release arsenic in aquatic environment. Volatilization of arsenic during coal
combustion is controlled by temperature, composition of coal and availability of elements such as calcium, sulphur and
chlorine. Later on after combustion it transform into solid forms and capture in fly ash and from here it enter in aquatic
environment (Wang et al., 2018). Although the arsenic based pesticides are banned and not widely used in agriculture
because of their harmful impacts but studies reveals that historic use of pesticides contributes to legacy pesticide residue
in soil and is considered a potential nonpoint source of arsenic contamination (Higgins et al., 2021). Incineration of solid
waste that contains chlorine facilitates the formation of volatile arsenic chlorides. Rain washes off arsenic from the
atmosphere and results in its deposition in nearby waterbodies (Shen et al., 2018). Industrial byproducts also affect the
leaching and mobility of arsenic. Various byproducts such as waste gypsum boards, steel abrasive and other residues are
mixed with soil and thermally treated. Results show that thermal treatment negatively affects arsenic-contaminated soil
as it increases arsenic leaching (Kumpiene et al., 2016). Arsenic enters the groundwater and water bodies in its most
soluble forms through runoff and leaching (Pongratz, 1998).

Factors affecting arsenic toxicity in fishes

Several biological and environmental factors impact the bioaccumulation of arsenic in aquatic species. In addition to
environmental factors, including phosphorus levels, pH, salinity, and the concentration of dissolved organic matter
(DOM), these also include the species, size, and age of the organisms (Kamboj et al., 2022; Tomar et al., 2022).
Furthermore, the rate at which arsenic is absorbed from food depends on several variables, including species density,
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ambient pH, gut environment, gut transit length, the presence of iron oxides, and the nature of the food or living prey.
Furthermore, the organism gets rid of arsenic through physiological functions such molting, excretion, and reproduction
(Zhang et al., 2022).

(i). Arsenic speciation in fish

The level of oxidation and both its forms namely inorganic and organic decides the toxicity of Arsenic in the aquatic
organisms (Canivet et al., 2001). Arsenic contamination of fish occurs in several forms, including arsenobetaine (AsB),
ascorbic acid (AsIII), arsenite (AsV), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) (Hoy et al.,
2023). Living organisms excrete inorganic Arsenic via metabolites like arsenocholine (AsC) and arsenobetaine (AsB),
which are less toxic than organic Arsenic (Camacho et al., 2022). Inorganic Arsenic accumulates more rapidly in tissues
than organic Arsenic, therefore, it accumulates in tissues more quickly (Byeon et al., 2021). Two most common inorganic
arsenic forms are trivalent meta-arsenite (As®") and pentavalent arsenate (As>") (Ganie et al., 2023).

(i). Biotic and abiotic factors

Ardini et al. (2019) state that various biotic and abiotic elements, such as exposure duration, arsenic speciation, water
temperature, pH levels, organic content, phosphate concentration, suspended particles, and the presence of other chemicals
and toxins influence toxicity and related factors. Anthropogenic and geogenic sources are the two main ways that arsenic
enters water bodies. Although gaseous arsenic can also enter water bodies through precipitation, it is added to surface
waters by direct discharge. Arsenic present in soil and water can leach into groundwater, impacting aquatic life. Research
indicates that the median survival time of fish typically decreases with rising temperature and arsenic concentration.
Although different arsenic species have varied origins and levels of toxicity, it is essential to identify them when
researching exposure to arsenic (Kretsinger et al., 2013). Hazardous inorganic arsenic is changed by the biomethylation
process into less dangerous pentavalent forms such dimethylarsenate (DMAv), trimethylarsine (DMAIII) and
monomethylarsonate (MMAv). Nevertheless, biomethylation produces dimethylarsenite (DMAIII), trimethylarsonic
oxide (TMAOV), and monomethylarsenite (MMAIII), which are more hazardous than inorganic arsenic (Neff, 1997).

(iii). Bioaccumulation

In fish, arsenic bioaccumulates mainly in the retina, liver, and kidney tissues, leading to a reduction in various antibodies
within the fish's immune system. When metalloid arsenic accumulates to toxic levels in these tissues, it can ultimately
result in several diseases (Kumar et al., 2023). The patterns of distribution and accumulation of toxic metals in fish tissues
are influenced by their rates of absorption and excretion. When these metals accumulate to significantly high levels, they
can lead to various physiological issues and even death (Kalay & Canli, 2000). Arsenic bioaccumulation includes uptake,
assimilation, biotransformation, and elimination. Accumulation levels in aquatic organisms are influenced by biological,
physicochemical, and environmental factors (Thomas, 2007).

Toxicological effects of arsenic on fish

Arsenic is harmful to fish, mainly by resulting in oxidative stress, storing in their bodies and interrupting their metabolism
and body functions (Sevcikova et al., 2011). In fish, the way toxic metals accumulate and are distributed in their tissues
relies on their uptake and elimination rates and can result in several health issues and mortality when levels become very
high (Kumari et al., 2016). Even a very small amount of some toxins can change the way fish behave by making them
less sensitive to their surroundings. Many irregular behaviours, for example erratic movement, rapid opercula movement,
leaving the test medium, swimming to one side and losing balance were seen in fish exposed to sodium arsenate (Chételat
et al., 2019). Because of these harmful effects, fish are harmed, aquatic ecosystems can be threatened, and food safety is
put at risk. Information on how arsenic affects fish is summarised in Table 1.

Table 1. Arsenic effects on aquatic organisms with associated impacts

Affected organisms Impact on organisms Reference

Danio rerio Increased eye size, (Babich & Van Beneden, 2019)
Hinder retinogenesis,
Hepatotoxicity

Oryzias latipes Bioaccumulation (Rahman et al., 2012; Gaworecki et
Biotransformation al., 2011)
Altered muscle development
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Clarias batrachus

Altered epidermal histomorphology
Behavioral stress,
Degeneration of club cells

(Khan et al., 2022; Sahu & Kumar,

2021)

Hetero pneustisfossilis L.

Hypo- and hyperpigmentation

(Singh et al., 2008)

Oreochromis
mossambicus

Desquamation

Edema and necrosis

Aneurism and hyperplasia of epithelial cells in
gills

(Ardini et al., 2019)

Tilapia mossambica

Nuclear hypertrophy
Irregularly shaped nuclei

(Kretsinger et al., 2013)

Channa punctatus

Degenerative reactions in hepatopancreas,
Oxidative stress

(Orloff et al., 2009)

Catla catla
L. rohita
Cirrhinus mrigala

Hyperglycemic impact

(Pedlar et al., 2002)

Oryctolaguscuniculus

Decreased hemoglobin levels

(Celino et al., 2009)

Gambusia holbrooki

Behavioral changes (more aggressive)

(Magellan et al., 2014)

Mystus vittatus

Decreased in alkaline and acid phosphatases
level

(Prakesh et al., 2020)

Fundulus heteroclitus

Reduced muscle fibers

(D’Amico et al., 2013)

Salmo trutta

Oxidative stress

(Greani et al., 2017)

affected.

L. rohita Cause hematology, (Raza et al., 2021)
Immunobiochemical and histological
shortcomings

Mystus vittatus Metabolism of organic molecules was | (Srivastava & Prakash, 2019)

Sparus aurata

Cause histopathological alterations in liver

(Guardiola et al., 2013)

Sperata sarwari

Bioaccumulation in kidney

(Aamir, 2020)

Carassius auratus

Oxidative stress

(Guardiola et al., 2013)

Alteration of antioxidant system
Bioaccumulation and alteration in antioxidant
enzymes

Negative impact on antioxidant enzymes

Sebastes schlegelii (Kim & Kang, 2015)

Cyprinus carpio (Altikat et al., 2014)

Discussion

When fish are exposed to an arsenic-contaminated environment than it enters their body through multiple routes, including
absorption by gills, skin and ingestion of contaminated water, sediments and dietary sources. Once it enters the
bloodstream then it tends to accumulate in vital organs such as the liver, gills, kidneys, etc (Garai et al., 2021). Increased
concentrations of these toxins in fish cause various kinds of physiological and biochemical problems. Mekkawy et al.
(2020) exposes African catfish, Clarias gariepinus to levels of arsenic below lethal concentration (19.2 or 38.3 mg/L)
caused serious changes in the blood and biochemical make up such as drop in RBC count, hematocrit, mean corpuscular
volume (MCV), mean corpuscular hemoglobin (MCH) and variations in white blood cells in the results. Changes in
alkaline phosphatase, glucose, uric acid, creatinine, albumin, globulin and the albumin/globulin ratio due to arsenic
exposure indicate that several organs were put under stress. Similar results were observed by Kumar & Banerjee (2016)
when Clarias batrachus was exposed to sodium arsenite. Along with this decline in serum protein level were also
observed, which indicates systemic toxicity with and physiological stress. Research shows that when Danio rerio fish are
repeatedly exposed to arsenic and chromium, separately and combined, they suffer more abnormal nuclear changes in
their red blood cells. Altered expression of base excision repair genes (oggl, apex1, crebl, polb) and mismatch repair
genes (mlh1l, msh2, msh6) indicates DNA repair inhibition. A decrease in tumour suppressor genes was also observed,
which promotes apoptosis, pointing to a higher risk of cancer (Kamila et al., 2025). Acute toxicity and its histopathological
impacts on the gill and liver tissue of Oreochromis mossambicus was observed by Ahmed et al. (2013) Remarkable gill
changes were noticed in the form of epithelial hyperplasia, lifted epithelium, accumulated fluid, lamellar fusions,
ballooning, cell loss and tissue death, while the liver tissue revealed inflammation, jamming of the vessels, hepatocyte
shrinkage, widened venules, watery swelling, dilation of the cells, spotty cell mortality and nuclear swell. Dawkinsia
tambraparniei exposure to arsenic trioxide and sodium arsenite for 42 days, stress-responsive genes (Mt, p53 and SOD)
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in the brain, heart and liver express themselves differently. As.Os raised p53 levels in brain tissue, but NaAsO: increased
them in heart and liver which suggests that each tissue responded to the stress differently (Sakthivel et al., 2022).
Behavioral changes were also observed in As exposed fishes such as increase in aggression, decrease in operculum
movement along with reduction in food capturing capacity (Magellan et al., 2014).

Conclusion

Freshwater environments have very different arsenic levels because of their sources, availability, and chemical properties.
There are a lot of arsenic inputs from land and other environmental factors that can cause high arsenic levels in estuaries
and coastal waters. It has a lot of bad effects on aquatic organisms if exposed to arsenic and it leads to bioaccumulation.
It serves as a call to action to take steps to protect our aquatic environments, preserve biodiversity, and ensure the welfare
of future and present generations. Although studies on arsenic are many, we need more information about its continuous
and moderate impacts, especially in important species of fish. Future work should choose to use genomics, transcriptomics
and proteomics to help in discovering biomarkers for early detection. It will be necessary to examine how arsenic reacts
with other pollutants and environmental changes related to climate. Apart from these, setting tougher environmental laws,
managing wastewater better and educating people are vital actions to reduce arsenic pollution. Efforts involving science,
technology and policies must be combined to protect aquatic environments from the lasting harm of arsenic. Arsenic's
Silent Assault on Fish Health serves as a call to action. We can only combat arsenic's silent assault through collaboration
and a shared commitment to sustainability, to provide a healthier and more resilient aquatic ecosystem by working
together.
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