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Background: A diverse rice genotypes were evaluated for fifteen morphological/growth, reproductive/yield-related,
physiological, and phenological traits to uncover their genetic variability and trait associations that are critical for
developing stress-resilient high-yielding genotypes.

Methods: Descriptive statistics, four-way Venn diagram, PCA biplot, correlation network, and Composite Performance
Index (CPI) from standardized PC1 (grain yield-driven) with k-means clustering were employed to dissect variability and
rank genotypes.

Results: Descriptive statistics revealed extensive phenotypic variation, particularly in grain yield per plant (4.95-45.5 g),
plant height (PH) (68.1-168.0 cm), and total tillers /productive tillers, while intrinsic water use efficiency iWUE) showed
broad adaptation potential. A four-way Venn diagram of top-performing genotypes across source, sink, growth, and
phenology categories highlighted limited functional overlap, emphasizing trait-specific excellence. Principal component
analysis (PCA) biplot explained 39.9% of variation (PC1: 23.5%, PC2: 16.4%) and delineated three genotype clusters
viz., yield-oriented genotypes processing high total tillers, productive tillers, and spikelet fertility. Physiologically efficient
genotypes having enhanced photosynthetic rate (PNET) and iWUE. Genotypes with large flag leaf area (FLA) and PH
contributing for tall and biomass accumulation with lower yield efficiency. Correlation network analysis identified three
interconnected clusters reproductive/yield-related, morphological/growth, and physiological. Plant height trait
interconnects all these clusters in the correlation network. The Composite Performance Index (CPI), derived from
standardized PC1 with grain yield as the directional driver, ranked genotypes continuously with k-mean clustering,
discriminate the genotypes in to three clusters (Low, medium and high performing). Genotypes viz., IRIS 313-10260,
IRIS 313-9160, and IRIS_313-10609 identified as best performing genotypes.

Conclusion: Established a multivariate pipeline that integrates the morphological/growth, reproductive/yield-related,
physiological, and phenological traits into an ideotype framework. No genotype excels across all modules, but top CPI

performers (IRIS 313-10260, IRIS 313-9160, IRIS 313-10609) integrate complementary strengths, making them ideal
core donors.
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Introduction

The architecture of rice productivity is a multi-dimensional web of traits where source, sink, growth, and phenological
traits interact through trade-offs and synergies, hence, single-trait breeding for productivity is less effective (
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). Breeding for increased and sustainable rice productivity requires tools that
summarise and prlormse complex, multivariate phenotypes. Multivariate methods such as principal component analysis
(PCA) are widely used to reduce dimensionality and visualise the relationships among traits and genotypes, enabling
breeders to identify trait axes relevant to yield and adaptation. PCA can be used for grouping genotypes and detecting
major trait combinations in rice and other crops ( ; ). Correlation network allows the
examination of available trait architecture components in the dataset and identify the trait hubs that coordinate multiple
functions. Correlation network has been used to reveal adaptive strategies under water-limited environments (

). Multi-trait indices have been recently used in selecting promising genotype ( ). Accounting for
the PCA, correlation network and multi-trait Composite Performance Index (CPI), the breeder can devise strategic
crossing schemes by picking suitable genotypes to fulfil the breeding objectives that balances the yield trade-offs with
other traits. Integrative multivariate analysis enables the identification of genotypes by combining favourable structural
(source/sink) and physiological traits providing a practical path toward ideotype breeding in rice. In this study, we leverage
descriptive statistics, PCA biplot, correlation network, and CPI ranking in a panel of 100 rice genotypes to (i) quantify
phenotypic variation, (ii) reveal trait clusters and hubs, (iii) rank genotypes by multi-trait performance, and (iv) identify
ideotype intersections for practical breeding use.

Materials and Methods

Plant material and crop husbandry

A total of 180 diverse rice accessions were raised at the Wetlands, Tamil Nadu Agricultural University, Coimbatore
(latitude 11.01236°N, longitude 76.93559°E). Seeds were sown in raised nursery beds, and 21-day-old seedlings were
transplanted to the main field at a spacing of 20 X 20 cm in 2 m? plots by following unreplicated single-plot field evaluation
(observational design). Fertilizer was applied at the recommended rate of 150:50:50 kg NPK/ha, with basal application
and two top-dressings following the TNAU Crop Production Guide 2020. All the cultural practices were practised as per
TNAU Crop Production Guide 2020 (https://agritech.tnau.ac.in/pdf/AGRICULTURE.pdf).

Trait measurements

The fifteen traits were measured on five randomly tagged plants per genotype (unless otherwise specified) at appropriate
phenological stages and grouped as follows:

Morphological/Growth Traits (plant structure and vegetative development)

PH (Plant height): Measured from the soil surface to the tip of the primary panicle at maturity and expressed in cm. TT
(Total tillers): Total number of tillers per plant counted at maturity. PT (Productive tillers): Number of panicles bearing
tillers per plant at maturity. FLA (Flag leaf area): Calculated from length x breadth x 0.75 correction factor and expressed
in cm?. VN (Total number of veins): Three flag leaf samples per genotype were collected at flowering; veins were counted
manually and averaged. LBR (Grain length—breadth ratio): Length and breadth of 20 filled grains per plant were measured
using a vernier caliper; LBR was computed as length + breadth (no units).

Reproductive/Yield-Related Traits (direct influence on yield potential)

PL (Panicle length): Measured from the collar to the tip of the panicle (cm) on panicles collected for spikelet fertility
assessment. TSN (Total spikelet number): Counted per panicle on five primary panicles per plant. SF (Spikelet fertility)
was determined as (number of filled grains =+ total spikelets) x 100 (%). GY (Grain yield per plant): Grains from primary
and secondary panicles of five individually harvested plants were threshed, weighed separately, and averaged (g/plant).

Physiological Traits (resource use and functioning)

TRR (Transpiration rate, mmol m2 s™'), PNET (Photosynthetic rate, pmol m2 s™'), SC (Stomatal conductance, mmol m2
s1): Recorded at flowering stage between 09:00 and 11:00 h on the middle portion of fully expanded flag leaves of three
tagged plants per genotype using a portable photosynthesis system (ADC BioScientific Ltd., UK). iWUE (Intrinsic water
use efficiency, pmol mol™) was calculated as PNET =+ SC.

Phenological Trait (developmental timing)

DFF (Days to first flowering): Each plot was monitored twice daily (morning and evening); the day on which the first
spikelet emerged from the boot leaf sheath was recorded. After recording morphological and physiological observations,
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tagged plants were harvested individually. Primary and secondary panicles were separated for yield and fertility
assessments, and remaining plant parts were harvested in paper covers.

Statistical analyses

A sub set of 100 genotypes were selected based on the criteria that no missing data point for any genotype for any trait is
available. All statistical analyses were performed using Python 3.9 with libraries including pandas, numpy, scikit-learn,
matplotlib, seaborn, networkx, and venny4py. Phenotype values were standardized using StandardScaler prior to principal
component analysis (PCA). PCA was conducted to reduce dimensionality, and the first two components were visualized
using a biplot with trait loadings scaled for interpretability and 95% confidence ellipses were added per k-means cluster
using eigenvalue decomposition. The Composite Performance Index (CPI) was computed as standardized PC1, with sign
flipped if the GY loading was negative, ensuring higher values indicate superior performance. Correlation networks were
constructed from Pearson coefficients with edges coloured by |r| bins and styled by p-value thresholds (p < 0.05 dotted, p
< 0.01 solid edge). Violin plots were generated using seaborn. Venn diagrams were created using venny4py with
annotation of genotype within intersection regions.

Trait selection for Composite Performance Index (CPI)

The CPI methodology was followed for the present analysis. All measured traits (PH, TT, PT, FLA, VN, PL, TSN, SF,
GY, LBR, TRR, PNET, SC, iWUE, DFF) were standardized (z-scores) and subjected to principal component analysis
(PCA). Traits retained for CPI were identified by the method given below. Let a; be the loading of trait j on the first
principal component (PC1). Define the 75th percentile threshold of absolute PC1 loadings as t = quantile({laj
[:7=1,...,p},0.75). The preliminary set of PC1-important traits is S={j: la;] > t}. From S retain only those traits that are
positively correlated with grain yield T = {j € S : corr(Xj, GY) > 0}. Where, corr is the Pearson correlation computed
across genotypes. Finally, the CPI components setis C= {GY} U {iWUE} UT.

CPI formula (weighted with GY highest weight)

All traits in CCC were standardized to z-scores:
Xij— W
O; j
where X is the observed value of trait j for genotype i and L, o; are the mean and standard deviation of trait j across
genotypes.

Zij =

We used a simple weighting scheme that gives grain yield (GY) the highest influence (weight wgy=2) and assigns unit
weight to all other CPI components. Let the CPI component weights be w; (with wgy=2w) and w=1 for all j € C\{GY}
Then the weighted CPI for genotype i is:

_ Xjec WiZij

CPI; =
Y Yjec W

which, for the typical case where C={GY,iWUE,PL,PT,TT,DFF,LBR}, becomes

2Z

CPI, = ——GY * 2w %

7.
" iIWUE LPL +

LPT
8

+ Zi'TT + Zi'DFF + Zi'LBR

Results
Phenotypic Variation of the measured traits

Descriptive analysis (Figure 1) depicts the distribution and variability of fifteen traits displaying a substantial genetic
variation within the population for all the traits measured. Among morphological/growth traits, plant height (PH) showed
a broad range of variation (68.1-168.0 cm; mean 116.7 cm), suggesting that the population is mixture of both dwarf and
tall genotypes. Total tiller (TT; 6.0-33.0) and productive tiller (PT; 5.6—33.4) exhibited considerable variation displaying
the availability of tillering potential in the population. Flag leaf area (FLA; 8.94-70.84 cm?) displayed substantial spread,
suggesting wide variation in source capacity. In contrast, vein number and length breadth ratio showed narrow
distributions, indicating relative uniformity. Among reproductive/yield-related traits, grain yield per plant (GY; 4.95 to
45.5 g; mean 18.5 g), display a right-skewed distribution where a few genotypes contributed exceptionally high yields.
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Total spikelet number (TSN; 22-212.6) also showed a wide spread, reflecting differences in reproductive capacity. Panicle
length (PL) and spikelet fertility (SF) varied moderately (Figure 1). Among physiological traits, photosynthetic rate
(PNET; 1.76—-17.18 umol m™ s™') and Intrinsic water use efficiency (i(WUE7; 43—64.85 umol mol™) displayed substantial
variation indicating that the availability of varied mechanisms for increasing photosynthetic efficiency and water
conservation. Transpiration rate and stomatal conductance showed narrow variation in the population. Days to fifty
percent flowering (DFF; phenological trait) had moderate variation, with weak links to other traits. Overall, the prominent
variations in the reproductive/yield-related and physiological traits emphasis the rich genetic variability of the traits that
can be explored for selecting superior, high-yielding, and resource-efficient genotypes in the breeding program.

Plant height Total tillers Productive tillers Flag leaf area
{cm) {Numbers) {Numbers) {ecm?)
68.00 3.00 33.40 70.84
BII ‘ ‘ 8.94
Total number of veins Panicle length Total spikelet number Spikelet fertility
(Numbers) {cm) {Numbers) (Per cent)
12.00 32,90 12.60 4
‘ 17.50 22n| 43.14
Grain yield per plant Grain length breath ratio Transpiration rate Photosynthetic rate
{Gram) {No units) (mmol/im?/s) (umol/m?/s)

6.31 17.18

FYSY -

Stomatal conductance Intrinsic water use efficiency Days to first flowering
(mmol/m?/s) {(umol/mol) {Numbers}

0.28 64.85 ‘ 114.00
. 7.43 68.0

Figure 1. Violin plots showing the distribution of fifteen traits grouped into morphological/growth,
reproductive/yield-related, physiological, and phenological categories. Large colored markers indicate minimum
(red), maximum (dark green), mean (orange), and standard deviation (blue)

@ Mean

® Minimum
@ Maximum
@ Std Dev

Overlap of Top-Performing Genotypes Across Functional Categories

The four-way Venn diagram (Figure 2) illustrates the overlap of the top 10 performing rice genotypes across four
functional categories, Source (dominated by physiological traits: FLA, VN, PNET, TRR, SC, iWUE), Sink
(reproductive/yield-related traits: PL, TSN, SF, LBR, GY), Growth (morphological/growth traits: PH, TT, PT), and
Phenology (DFF), derived from their composite performance indices. A considerable number of genotypes were unique
to individual categories, indicating strong trait-specific performance. The Growth category included seven unique
genotypes (e.g., IRIS 313-10000, IRIS 313-10047), while Phenology had eight (e.g., IRIS 313-10016, IRIS 313-
10260). Limited overlap of genotypes across three category and no overlap of genotypes across all the four categories was
observed.
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=1 Source 1 Growth
770 Sink Phenology

Figure 2. Four-way Venn diagram depicting overlaps of top 10 genotypes across source, sink, growth, and
phenology categories identified by CPI ranking

Multivariate Relationships and Genotype Clustering
PCA Biplot: Genotypes Colored by Cluster

PC2 (16.4% variance)

—4 -2 0 2 4
PC1 (23.5% variance)
® Groupl — PH —— FLA  =— SF TRR — GY
® Group?2 TT — PL —— LBR = PNET  =—— {WUE
® Group3 — PT TSN — VN —— DFF —_— SC

Figure 3. PCA biplot based on fifteen traits grouped with three clusters (yield-oriented: blue; physiologically
efficient: green; vigorous, tall-statured: red) with 95% confidence ellipses
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Computation of PCA (Figure 3) estimates that 39.9% of the total phenotypic variation was explained by PC1 (23.5%) and
PC2 (16.4%) and cluster the genotypes into three distinct clusters. Group 1 (blue) comprising of yield-oriented genotypes,
positioned upper-right in figure 3, showing strong positive loadings of reproductive/yield-related traits (TT, PT, SF, GY).
The close alignment of GY, TT, and PT vectors indicates a strong positive correlation among these traits. The genotypes
in this cluster will have efficient tiller-to-grain conversion leading to high-yield. The genotypes in Group 2 (green) are
physiologically efficient which are located in the lower-right in the figure 3. These genotypes are associated with
physiological traits iWUE, PNET, SC, TRR), indicating a superior gas-exchange regulations and water-use efficiency.
Group 3 (red) genotypes are vigorous, tall-statured situated left in figure 3 that align with morphological/growth traits
(LBR, PH, FLA), but opposite to GY, TT, PT, suggesting that vegetative vigour was achieved at the cost of grain yield
per plant. Longer vectors (e.g., TT, PT, GY, PNET, iWUE) indicate greater influence of these on the total phenotypic
variation available in the population. Acute angles between TT, PT, and GY reflects the synergic effect of these traits
while the opposite directions between PH/FLA and yield traits signify their trade-offs.

Trait Interconnections in Correlation Network

The correlation network (Figure 4) reveals three major interconnected clusters of traits. Reproductive/yield-related module
comprises of GY, SF, TT, PT traits that are tightly linked via strong positive correlations reflecting their synergetic role in
productivity. Morphological/growth module comprises of PH, FLA, PL, TSN traits that possibly connect linking canopy
and panicle structures. Physiological module comprises of PNET, TRR, SC, iWUE, VN that are tightly connected, with
SC, TRR, PNET as central nodes. PH serves as a linking hub between morphological/growth and physiological modules.
DFF is weakly connected, confirming its independence.

Trait Correlation Network
Edge colour = |r| (5 bing) | Line style = p-value
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.
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‘ ’ Edge Legend
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Figure 4. Correlation network illustrating inter-trait relationships. Three clusters: reproductive/yield-related
(GY, TT, PT, SF), morphological/growth (PH, FLA, PL, TSN), physiological (PNET, SC, TRR, iWUE, VN). PH =
central hub
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Composite performance index and genotype ranking

The CPI dot plot (Figure 5) ranks all the genotypes by standardized PC1 with GY driving direction. The CPI ranking
coupled with k-mean clustering identified three groups. Group 3 (dark green) had highest CPI score (0.24 to 4.68) top
panel (figure 5; e.g., IRIS 313-10260, IRIS 313-9160). Group 2 (light coral) has lowest CPI score (-3.82 to 0.71). Group
1 (gold) was moderate (-4.15 to 1.33). The top 10 CPI genotypes are IRIS 313-10260, IRIS 313-9160, IRIS 313-10609,
IRIS 313-9227,IRIS 313-11671, IRIS 313-11885, IRIS 313-11899, IRIS 313-10458, IRIS 313-10016 and IRIS 313-
11638 having CPI score ranging from 4.68 to 2.62. This CPI integrates the synergetic traits of grain yield integrating the
reproductive/yield-related and phenological traits without extreme morphological/growth dominance.

Composite Performance Index (CPI) of All Genotypes
(Dot Plot — Colored by K-means Clustering)

™ Group | Group 2 . Group 3

CPI (Standardized PC1)

0 0 40 60 80 100
Genotypes Ranked by CPI (jittered + manual fix for overlapping labels)

Figure 5. Composite Performance Index (CPI) dot plot with k-means clustering into three performance groups
(gold, light coral, dark green). Genotypes ranked with jitter; labelled by ID

Discussion

The multivariate coherence across phenotypic diversity, shared association, and multi-trait interaction provides a robust
framework for functional ideotyping in rice, highlighting a consistent structuring of genotype—trait relationships by trait
groupings that are categorised in to morphological/growth, reproductive/yield-related, physiological, and phenological
modules. Comprehensive selection accounting for these interactions enhances the efficiency of the breeding activity.
Comprehensive multivariate approaches such as Multi-trait Genotype Ideotype Distance Index (MGIDI) and/or
Composite Performance Index efficiently capture the multi-dimensional trait contributions to identify superior genotypes
for yield or stress adaptive traits ( ; ). The right-skewed distribution of grain yield (Figure
1)) observed corresponds to a PCA cluster (Group 1; Figure 3) containing GY, TT, and PT) which defines yield-oriented
genotypes. This finding was validated by strong reproductive/yield-related trait interconnections observed in the
correlation networks that include SF, TT, PT, and GY.

These traits are crucial for achieving higher yield manifested through improved sink capacity and grain filling
( ). The Composite Performance Index (CPI) ranking identify the top-ranking genotypes with
traits related to growth and phenology (e.g., TT, PT and DFF), prioritizing their importance in improving GY. This
reinforces earlier reports emphasizing the coordination of phenological development and tiller dynamics for enhancing
grain yield potential ( ). The physiological module involving PNET, iWUE, SC, and TRR are the
characteristics of PCA Group 2 genotypes. These genotypes can be explored to develop drought tolerant genotypes using
suitable breeding strategy. It is interesting to note that none of the genotypes in Group 2 are within the top 10 genotypes
identified by CPI ranking and the genotypes in Group 2 has minimal overlap in shared associations (Figure 5) highlights
that physiological efficiency traits primarily enhance performance under stress conditions rather than optimal conditions
a scenario widely observed in stress tolerance studies ( ).

The morphological/growth module, characterized by taller plant height (PH), high flag leaf area (FLA), and increased
total spikelet number (TSN), was placed opposite to GY in PCA (Group 3). This antagonism lowers the CPI values of tall
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genotypes since high biomass accumulation without rationalizing the photosynthates to yield will reduce the harvest index
( ). PH act as a network hub that inversely related to GY suggests that taller canopies increase the
transpiration load with the trade-off with grain yield under non-stress conditions.

This pattern aligns with earlier findings that tall rice plant architecture increases the water use but often reducing the
harvest index ( ). Venn diagram overlaps illustrating a limited shared associations among different trait
module emphasizing that no single genotype excels in all the category (Table 1). High CPI is due to a balanced trait
combination bridging growth, sink, and phenology modules. This balance strategy is critical for achieving wholistic
performance, reinforcing the ideotype concept where complementary trait clusters driving the yield improvement (

).

Table 1. List of top 10 genotypes per functional category ranked by composite performance index (CPI)
Intersection Count Genotype

IRIS 313-10403, IRIS 313-10423, IRIS 313-10822,
IRIS 313-11263, IRIS 313-11635, IRIS 313-11758,
IRIS 313-11793, IRIS 313-11852, IRIS 313-8349,
IRIS 313-8697

IRIS 313-10433, IRIS 313-10822, IRIS 313-10897,
IRIS 313-11327, IRIS 313-11554, IRIS 313-11681,
IRIS 313-11793, IRIS 313-11941, IRIS 313-8293,
IRIS 313-9329

IRIS 313-10000, IRIS 313-10047, IRIS 313-10113,
IRIS 313-10224, IRIS 313-10403, IRIS 313-10423,
IRIS 313-10897, IRIS 313-11225, IRIS 313-8067,
IRIS 313-8288

IRIS 313-10016, IRIS 313-10260, IRIS 313-10458,
IRIS 313-10609, IRIS 313-10610, IRIS 313-11256,
IRIS 313-11263, IRIS 313-11467, IRIS 313-11681,
IRIS 313-12296

Source 10

Sink 10

Growth 10

Phenology 10

Source & Sink 2 IRIS 313-10822, IRIS 313-11793
Source & Growth 2 IRIS 313-10403, IRIS 313-10423
Source & Phenology | 1 IRIS 313-11263
Sink & Growth 1 IRIS 313-10897
Sink & Phenology 1 IRIS 313-11681

Yield-oriented genotypes (Group 1) dominate optimal conditions via reproductive/yield-related synergy. Physiologically
efficient genotypes (Group 2) represent the characteristics of a stress-tolerant, resource-efficient ideotypes characterized
by higher intrinsic water-use efficiency and balanced gas-exchange regulation under irrigated conditions. Tall-statured
genotypes (Group 3) need sink optimization. Top CPI genotypes are integrators. The complementary trait complexes
identified through multivariate analyses can be pyramided via marker-assisted selection to develop ideotypes combining
high yield and physiological efficiency.

Conclusion

This study established a multivariate pipeline that integrates the morphological/growth, reproductive/yield-related,
physiological, and phenological traits into an ideotype framework. No genotype excels across all modules, but top CPI
performers (IRIS 313-10260, IRIS 313-9160, IRIS 313-10609) integrate complementary strengths, making them ideal
core donors. However, this study is based on a single-environment evaluation. GXE interactions could change trait
correlations and CPI rankings. Future work should: (i) test genotypes across multiple environments and seasons; (ii)
evaluate the genetic basis (QTL/GWAS) of identified hub traits; (iii) explore genomic-enabled multi-trait selection
(genomic prediction) to accelerate selection cycles. Multi-trait genomic models have shown potential to increase
prediction accuracy and selection efficiency.
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