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Background: A diverse rice genotypes were evaluated for fifteen morphological/growth, reproductive/yield-related, 

physiological, and phenological traits to uncover their genetic variability and trait associations that are critical for 

developing stress-resilient high-yielding genotypes.  
 

Methods: Descriptive statistics, four-way Venn diagram, PCA biplot, correlation network, and Composite Performance 

Index (CPI) from standardized PC1 (grain yield-driven) with k-means clustering were employed to dissect variability and 

rank genotypes. 
 

Results: Descriptive statistics revealed extensive phenotypic variation, particularly in grain yield per plant (4.95–45.5 g), 

plant height (PH) (68.1–168.0 cm), and total tillers /productive tillers, while intrinsic water use efficiency (iWUE) showed 

broad adaptation potential. A four-way Venn diagram of top-performing genotypes across source, sink, growth, and 

phenology categories highlighted limited functional overlap, emphasizing trait-specific excellence. Principal component 

analysis (PCA) biplot explained 39.9% of variation (PC1: 23.5%, PC2: 16.4%) and delineated three genotype clusters 

viz., yield-oriented genotypes processing high total tillers, productive tillers, and spikelet fertility. Physiologically efficient 

genotypes having enhanced photosynthetic rate (PNET) and iWUE. Genotypes with large flag leaf area (FLA) and PH 

contributing for tall and biomass accumulation with lower yield efficiency. Correlation network analysis identified three 

interconnected clusters reproductive/yield-related, morphological/growth, and physiological. Plant height trait 

interconnects all these clusters in the correlation network. The Composite Performance Index (CPI), derived from 

standardized PC1 with grain yield as the directional driver, ranked genotypes continuously with k-mean clustering, 

discriminate the genotypes in to three clusters (Low, medium and high performing). Genotypes viz., IRIS_313-10260, 

IRIS_313-9160, and IRIS_313-10609 identified as best performing genotypes. 
 

Conclusion: Established a multivariate pipeline that integrates the morphological/growth, reproductive/yield-related, 

physiological, and phenological traits into an ideotype framework. No genotype excels across all modules, but top CPI 

performers (IRIS_313-10260, IRIS_313-9160, IRIS_313-10609) integrate complementary strengths, making them ideal 

core donors. 
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Introduction 
 

The architecture of rice productivity is a multi-dimensional web of traits where source, sink, growth, and phenological 

traits interact through trade-offs and synergies, hence, single-trait breeding for productivity is less effective (Anwar et al., 
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2022; Li et al., 2019; Jyoti et al., 2024). Breeding for increased and sustainable rice productivity requires tools that 

summarise and prioritise complex, multivariate phenotypes. Multivariate methods such as principal component analysis 

(PCA) are widely used to reduce dimensionality and visualise the relationships among traits and genotypes, enabling 

breeders to identify trait axes relevant to yield and adaptation. PCA can be used for grouping genotypes and detecting 

major trait combinations in rice and other crops (Yano et al., 2019; Shi et al., 2021). Correlation network allows the 

examination of available trait architecture components in the dataset and identify the trait hubs that coordinate multiple 

functions. Correlation network has been used to reveal adaptive strategies under water-limited environments (Wang et al., 

2023). Multi-trait indices have been recently used in selecting promising genotype (Ouattara et al., 2024). Accounting for 

the PCA, correlation network and multi-trait Composite Performance Index (CPI), the breeder can devise strategic 

crossing schemes by picking suitable genotypes to fulfil the breeding objectives that balances the yield trade-offs with 

other traits. Integrative multivariate analysis enables the identification of genotypes by combining favourable structural 

(source/sink) and physiological traits providing a practical path toward ideotype breeding in rice. In this study, we leverage 

descriptive statistics, PCA biplot, correlation network, and CPI ranking in a panel of 100 rice genotypes to (i) quantify 

phenotypic variation, (ii) reveal trait clusters and hubs, (iii) rank genotypes by multi-trait performance, and (iv) identify 

ideotype intersections for practical breeding use. 

 

Materials and Methods 
 

Plant material and crop husbandry 

 

A total of 180 diverse rice accessions were raised at the Wetlands, Tamil Nadu Agricultural University, Coimbatore 

(latitude 11.01236°N, longitude 76.93559°E). Seeds were sown in raised nursery beds, and 21-day-old seedlings were 

transplanted to the main field at a spacing of 20 × 20 cm in 2 m² plots by following unreplicated single-plot field evaluation 

(observational design). Fertilizer was applied at the recommended rate of 150:50:50 kg NPK/ha, with basal application 

and two top-dressings following the TNAU Crop Production Guide 2020. All the cultural practices were practised as per 

TNAU Crop Production Guide 2020 (https://agritech.tnau.ac.in/pdf/AGRICULTURE.pdf). 

 

Trait measurements 
 

The fifteen traits were measured on five randomly tagged plants per genotype (unless otherwise specified) at appropriate 

phenological stages and grouped as follows: 

 

Morphological/Growth Traits (plant structure and vegetative development) 

 

PH (Plant height): Measured from the soil surface to the tip of the primary panicle at maturity and expressed in cm. TT 

(Total tillers): Total number of tillers per plant counted at maturity. PT (Productive tillers): Number of panicles bearing 

tillers per plant at maturity. FLA (Flag leaf area): Calculated from length x breadth x 0.75 correction factor and expressed 

in cm². VN (Total number of veins): Three flag leaf samples per genotype were collected at flowering; veins were counted 

manually and averaged. LBR (Grain length–breadth ratio): Length and breadth of 20 filled grains per plant were measured 

using a vernier caliper; LBR was computed as length ÷ breadth (no units). 

 

Reproductive/Yield-Related Traits (direct influence on yield potential) 

 

PL (Panicle length): Measured from the collar to the tip of the panicle (cm) on panicles collected for spikelet fertility 

assessment. TSN (Total spikelet number): Counted per panicle on five primary panicles per plant. SF (Spikelet fertility) 

was determined as (number of filled grains ÷ total spikelets) x 100 (%). GY (Grain yield per plant): Grains from primary 

and secondary panicles of five individually harvested plants were threshed, weighed separately, and averaged (g/plant). 

 

Physiological Traits (resource use and functioning) 

 

TRR (Transpiration rate, mmol m⁻² s⁻¹), PNET (Photosynthetic rate, µmol m⁻² s⁻¹), SC (Stomatal conductance, mmol m⁻² 

s⁻¹): Recorded at flowering stage between 09:00 and 11:00 h on the middle portion of fully expanded flag leaves of three 

tagged plants per genotype using a portable photosynthesis system (ADC BioScientific Ltd., UK). iWUE (Intrinsic water 

use efficiency, µmol mol⁻¹) was calculated as PNET ÷ SC. 

 

Phenological Trait (developmental timing) 

 

DFF (Days to first flowering): Each plot was monitored twice daily (morning and evening); the day on which the first 

spikelet emerged from the boot leaf sheath was recorded. After recording morphological and physiological observations, 
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tagged plants were harvested individually. Primary and secondary panicles were separated for yield and fertility 

assessments, and remaining plant parts were harvested in paper covers. 

 

Statistical analyses 

 

A sub set of 100 genotypes were selected based on the criteria that no missing data point for any genotype for any trait is 

available. All statistical analyses were performed using Python 3.9 with libraries including pandas, numpy, scikit-learn, 

matplotlib, seaborn, networkx, and venny4py. Phenotype values were standardized using StandardScaler prior to principal 

component analysis (PCA). PCA was conducted to reduce dimensionality, and the first two components were visualized 

using a biplot with trait loadings scaled for interpretability and 95% confidence ellipses were added per k-means cluster 

using eigenvalue decomposition. The Composite Performance Index (CPI) was computed as standardized PC1, with sign 

flipped if the GY loading was negative, ensuring higher values indicate superior performance. Correlation networks were 

constructed from Pearson coefficients with edges coloured by |r| bins and styled by p-value thresholds (p ≤ 0.05 dotted, p 

≤ 0.01 solid edge). Violin plots were generated using seaborn. Venn diagrams were created using venny4py with 

annotation of genotype within intersection regions. 

 

Trait selection for Composite Performance Index (CPI) 

 

The CPI methodology was followed for the present analysis. All measured traits (PH, TT, PT, FLA, VN, PL, TSN, SF, 

GY, LBR, TRR, PNET, SC, iWUE, DFF) were standardized (z-scores) and subjected to principal component analysis 

(PCA). Traits retained for CPI were identified by the method given below. Let aj be the loading of trait j on the first 

principal component (PC1). Define the 75th percentile threshold of absolute PC1 loadings as τ = quantile({∣aj

∣:j=1,…,p},0.75). The preliminary set of PC1-important traits is S={j: ∣aj∣ ≥ τ}. From S retain only those traits that are 

positively correlated with grain yield T = {j ∈ S : corr(Xj, GY) > 0}. Where, corr is the Pearson correlation computed 

across genotypes. Finally, the CPI components set is C = {GY} ∪ {iWUE} ∪ T. 

 

CPI formula (weighted with GY highest weight) 

 

All traits in CCC were standardized to z-scores: 

𝑍𝑖𝑗 =
𝑋𝑖𝑗 − μ𝑗

σ𝑖𝑗
 

where Xij is the observed value of trait j for genotype i and μj, σj are the mean and standard deviation of trait j across 

genotypes.  

 

We used a simple weighting scheme that gives grain yield (GY) the highest influence (weight wGY=2) and assigns unit 

weight to all other CPI components. Let the CPI component weights be wj  (with wGY=2w) and wj=1 for all j ∈ C∖{GY} 

Then the weighted CPI for genotype i is: 

 

CPI𝑖 =
∑ 𝑤𝑗𝑍𝑖𝑗𝑗∈C 

∑  𝑤𝑗𝑗∈C
 

 

which, for the typical case where C={GY,iWUE,PL,PT,TT,DFF,LBR}, becomes 

 

CPI𝑖 =
2𝑍𝑖,GY

+ 𝑍𝑖,𝑖WUE
+ 𝑍𝑖,PL

+ 𝑍𝑖,PT
+ 𝑍𝑖,TT

+ 𝑍𝑖,DFF
+ 𝑍𝑖,LBR

 

8
 

 

Results 
 

Phenotypic Variation of the measured traits 

 

Descriptive analysis (Figure 1) depicts the distribution and variability of fifteen traits displaying a substantial genetic 

variation within the population for all the traits measured. Among morphological/growth traits, plant height (PH) showed 

a broad range of variation (68.1–168.0 cm; mean 116.7 cm), suggesting that the population is mixture of both dwarf and 

tall genotypes. Total tiller (TT; 6.0–33.0) and productive tiller (PT; 5.6–33.4) exhibited considerable variation displaying 

the availability of tillering potential in the population. Flag leaf area (FLA; 8.94–70.84 cm²) displayed substantial spread, 

suggesting wide variation in source capacity. In contrast, vein number and length breadth ratio showed narrow 

distributions, indicating relative uniformity. Among reproductive/yield-related traits, grain yield per plant (GY; 4.95 to 

45.5 g; mean 18.5 g), display a right-skewed distribution where a few genotypes contributed exceptionally high yields. 
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Total spikelet number (TSN; 22–212.6) also showed a wide spread, reflecting differences in reproductive capacity. Panicle 

length (PL) and spikelet fertility (SF) varied moderately (Figure 1). Among physiological traits, photosynthetic rate 

(PNET; 1.76–17.18 µmol m⁻² s⁻¹) and Intrinsic water use efficiency (iWUE7; 43–64.85 µmol mol⁻¹) displayed substantial 

variation indicating that the availability of varied mechanisms for increasing photosynthetic efficiency and water 

conservation. Transpiration rate and stomatal conductance showed narrow variation in the population. Days to fifty 

percent flowering (DFF; phenological trait) had moderate variation, with weak links to other traits. Overall, the prominent 

variations in the reproductive/yield-related and physiological traits emphasis the rich genetic variability of the traits that 

can be explored for selecting superior, high-yielding, and resource-efficient genotypes in the breeding program. 

 

 
Figure 1. Violin plots showing the distribution of fifteen traits grouped into morphological/growth, 

reproductive/yield-related, physiological, and phenological categories. Large colored markers indicate minimum 

(red), maximum (dark green), mean (orange), and standard deviation (blue) 

 

Overlap of Top-Performing Genotypes Across Functional Categories 

 

The four-way Venn diagram (Figure 2) illustrates the overlap of the top 10 performing rice genotypes across four 

functional categories, Source (dominated by physiological traits: FLA, VN, PNET, TRR, SC, iWUE), Sink 

(reproductive/yield-related traits: PL, TSN, SF, LBR, GY), Growth (morphological/growth traits: PH, TT, PT), and 
Phenology (DFF), derived from their composite performance indices. A considerable number of genotypes were unique 

to individual categories, indicating strong trait-specific performance. The Growth category included seven unique 

genotypes (e.g., IRIS_313-10000, IRIS_313-10047), while Phenology had eight (e.g., IRIS_313-10016, IRIS_313-

10260). Limited overlap of genotypes across three category and no overlap of genotypes across all the four categories was 

observed. 
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Figure 2. Four-way Venn diagram depicting overlaps of top 10 genotypes across source, sink, growth, and 

phenology categories identified by CPI ranking 

 

Multivariate Relationships and Genotype Clustering 

 
Figure 3. PCA biplot based on fifteen traits grouped with three clusters (yield-oriented: blue; physiologically 

efficient: green; vigorous, tall-statured: red) with 95% confidence ellipses 
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Computation of PCA (Figure 3) estimates that 39.9% of the total phenotypic variation was explained by PC1 (23.5%) and 

PC2 (16.4%) and cluster the genotypes into three distinct clusters. Group 1 (blue) comprising of yield-oriented genotypes, 

positioned upper-right in figure 3, showing strong positive loadings of reproductive/yield-related traits (TT, PT, SF, GY). 

The close alignment of GY, TT, and PT vectors indicates a strong positive correlation among these traits. The genotypes 

in this cluster will have efficient tiller-to-grain conversion leading to high-yield. The genotypes in Group 2 (green) are 

physiologically efficient which are located in the lower-right in the figure 3. These genotypes are associated with 

physiological traits (iWUE, PNET, SC, TRR), indicating a superior gas-exchange regulations and water-use efficiency. 

Group 3 (red) genotypes are vigorous, tall-statured situated left in figure 3 that align with morphological/growth traits 

(LBR, PH, FLA), but opposite to GY, TT, PT, suggesting that vegetative vigour was achieved at the cost of grain yield 

per plant. Longer vectors (e.g., TT, PT, GY, PNET, iWUE) indicate greater influence of these on the total phenotypic 

variation available in the population. Acute angles between TT, PT, and GY reflects the synergic effect of these traits 

while the opposite directions between PH/FLA and yield traits signify their trade-offs. 

 

Trait Interconnections in Correlation Network 

 

The correlation network (Figure 4) reveals three major interconnected clusters of traits. Reproductive/yield-related module 

comprises of GY, SF, TT, PT traits that are tightly linked via strong positive correlations reflecting their synergetic role in 

productivity. Morphological/growth module comprises of PH, FLA, PL, TSN traits that possibly connect linking canopy 

and panicle structures. Physiological module comprises of PNET, TRR, SC, iWUE, VN that are tightly connected, with 

SC, TRR, PNET as central nodes. PH serves as a linking hub between morphological/growth and physiological modules. 

DFF is weakly connected, confirming its independence. 

 

 
Figure 4. Correlation network illustrating inter-trait relationships. Three clusters: reproductive/yield-related 

(GY, TT, PT, SF), morphological/growth (PH, FLA, PL, TSN), physiological (PNET, SC, TRR, iWUE, VN). PH = 

central hub 
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Composite performance index and genotype ranking 

 

The CPI dot plot (Figure 5) ranks all the genotypes by standardized PC1 with GY driving direction. The CPI ranking 

coupled with k-mean clustering identified three groups. Group 3 (dark green) had highest CPI score (0.24 to 4.68) top 

panel (figure 5; e.g., IRIS_313-10260, IRIS_313-9160). Group 2 (light coral) has lowest CPI score (-3.82 to 0.71). Group 

1 (gold) was moderate (-4.15 to 1.33). The top 10 CPI genotypes are IRIS_313-10260, IRIS_313-9160, IRIS_313-10609, 

IRIS_313-9227, IRIS_313-11671, IRIS_313-11885, IRIS_313-11899, IRIS_313-10458, IRIS_313-10016 and IRIS_313-

11638 having CPI score ranging from 4.68 to 2.62. This CPI integrates the synergetic traits of grain yield integrating the 

reproductive/yield-related and phenological traits without extreme morphological/growth dominance. 

 

 
Figure 5. Composite Performance Index (CPI) dot plot with k-means clustering into three performance groups 

(gold, light coral, dark green). Genotypes ranked with jitter; labelled by ID 

 

Discussion 
 

The multivariate coherence across phenotypic diversity, shared association, and multi-trait interaction provides a robust 

framework for functional ideotyping in rice, highlighting a consistent structuring of genotype–trait relationships by trait 

groupings that are categorised in to morphological/growth, reproductive/yield-related, physiological, and phenological 

modules. Comprehensive selection accounting for these interactions enhances the efficiency of the breeding activity. 

Comprehensive multivariate approaches such as Multi-trait Genotype Ideotype Distance Index (MGIDI) and/or 

Composite Performance Index efficiently capture the multi-dimensional trait contributions to identify superior genotypes 

for yield or stress adaptive traits (Debnath, 2024; Habib et al., 2024). The right-skewed distribution of grain yield (Figure 

1)) observed corresponds to a PCA cluster (Group 1; Figure 3) containing GY, TT, and PT) which defines yield-oriented 

genotypes. This finding was validated by strong reproductive/yield-related trait interconnections observed in the 

correlation networks that include SF, TT, PT, and GY.  

 

These traits are crucial for achieving higher yield manifested through improved sink capacity and grain filling 

(Mahalakshmi et al., 2024). The Composite Performance Index (CPI) ranking identify the top-ranking genotypes with 

traits related to growth and phenology (e.g., TT, PT and DFF), prioritizing their importance in improving GY. This 

reinforces earlier reports emphasizing the coordination of phenological development and tiller dynamics for enhancing 

grain yield potential (Li et al., 2019). The physiological module involving PNET, iWUE, SC, and TRR are the 

characteristics of PCA Group 2 genotypes. These genotypes can be explored to develop drought tolerant genotypes using 

suitable breeding strategy. It is interesting to note that none of the genotypes in Group 2 are within the top 10 genotypes 

identified by CPI ranking and the genotypes in Group 2 has minimal overlap in shared associations (Figure 5) highlights 

that physiological efficiency traits primarily enhance performance under stress conditions rather than optimal conditions 

a scenario widely observed in stress tolerance studies (Habib et al., 2024). 

 

The morphological/growth module, characterized by taller plant height (PH), high flag leaf area (FLA), and increased 

total spikelet number (TSN), was placed opposite to GY in PCA (Group 3). This antagonism lowers the CPI values of tall 
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genotypes since high biomass accumulation without rationalizing the photosynthates to yield will reduce the harvest index 

(Cheng et al., 2022). PH act as a network hub that inversely related to GY suggests that taller canopies increase the 

transpiration load with the trade-off with grain yield under non-stress conditions.  

 

This pattern aligns with earlier findings that tall rice plant architecture increases the water use but often reducing the 

harvest index (Jing et al., 2022). Venn diagram overlaps illustrating a limited shared associations among different trait 

module emphasizing that no single genotype excels in all the category (Table 1).  High CPI is due to a balanced trait 

combination bridging growth, sink, and phenology modules. This balance strategy is critical for achieving wholistic 

performance, reinforcing the ideotype concept where complementary trait clusters driving the yield improvement (Habib 

et al., 2024). 

 

Table 1. List of top 10 genotypes per functional category ranked by composite performance index (CPI)  

Intersection Count Genotype 

Source 10 

IRIS_313-10403, IRIS_313-10423, IRIS_313-10822, 

IRIS_313-11263, IRIS_313-11635, IRIS_313-11758, 

IRIS_313-11793, IRIS_313-11852, IRIS_313-8349, 

IRIS_313-8697 

Sink 10 

IRIS_313-10433, IRIS_313-10822, IRIS_313-10897, 

IRIS_313-11327, IRIS_313-11554, IRIS_313-11681, 

IRIS_313-11793, IRIS_313-11941, IRIS_313-8293, 

IRIS_313-9329 

Growth 10 

IRIS_313-10000, IRIS_313-10047, IRIS_313-10113, 

IRIS_313-10224, IRIS_313-10403, IRIS_313-10423, 

IRIS_313-10897, IRIS_313-11225, IRIS_313-8067, 

IRIS_313-8288 

Phenology 10 

IRIS_313-10016, IRIS_313-10260, IRIS_313-10458, 

IRIS_313-10609, IRIS_313-10610, IRIS_313-11256, 

IRIS_313-11263, IRIS_313-11467, IRIS_313-11681, 

IRIS_313-12296 

Source & Sink 2 IRIS_313-10822, IRIS_313-11793 

Source & Growth 2 IRIS_313-10403, IRIS_313-10423 

Source & Phenology 1 IRIS_313-11263 

Sink & Growth 1 IRIS_313-10897 

Sink & Phenology 1 IRIS_313-11681 

 

Yield-oriented genotypes (Group 1) dominate optimal conditions via reproductive/yield-related synergy. Physiologically 

efficient genotypes (Group 2) represent the characteristics of a stress-tolerant, resource-efficient ideotypes characterized 

by higher intrinsic water-use efficiency and balanced gas-exchange regulation under irrigated conditions. Tall-statured 

genotypes (Group 3) need sink optimization. Top CPI genotypes are integrators. The complementary trait complexes 

identified through multivariate analyses can be pyramided via marker-assisted selection to develop ideotypes combining 

high yield and physiological efficiency. 

 

Conclusion 
 

This study established a multivariate pipeline that integrates the morphological/growth, reproductive/yield-related, 

physiological, and phenological traits into an ideotype framework. No genotype excels across all modules, but top CPI 

performers (IRIS_313-10260, IRIS_313-9160, IRIS_313-10609) integrate complementary strengths, making them ideal 

core donors. However, this study is based on a single-environment evaluation. GxE interactions could change trait 

correlations and CPI rankings. Future work should: (i) test genotypes across multiple environments and seasons; (ii) 

evaluate the genetic basis (QTL/GWAS) of identified hub traits; (iii) explore genomic-enabled multi-trait selection 

(genomic prediction) to accelerate selection cycles. Multi-trait genomic models have shown potential to increase 

prediction accuracy and selection efficiency. 
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