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Background: A critical step to maximize the usefulness of genome-wide association studies (GWAS) in plant breeding 

is the identification and validation of candidate genes underlying genetic associations. Once strong candidates are 

identified, further validation helps confirm whether the gene truly influences the trait. This process strengthens confidence 

in marker-trait relationships and enables the development of more precise molecular markers or genomic prediction 

models for crop improvement. 

 

Methods: Genome-wide association study (GWAS) was conducted on a panel of 100 genetically diverse rice genotypes 

to dissect the genetic architecture of the Composite Performance Index (CPI), a multivariate principal component score 

integrating all major agronomic traits. 

 

Results: Full annotation of all nine significant SNPs revealed perfect convergence on four biologically coherent 

functional modules. Four reproducible quantitative loci (CPI-1, CPI-4, CPI-8 and CPI-11) were identified, explaining the 

major gradients in field performance. These loci encompass biologically coherent modules linked to energy metabolism, 

growth regulation, cell-wall integrity and dehydration response. Favourable alleles were located on chromosomes 8 and 

11 contributing +1.12 and +1.38 CPI units, respectively. Unfavourable alleles on chromosomes 1 and 4 were associated 

with stress response and growth-defense trade-offs. The combined fixation of favourable haplotypes from CPI-8 and CPI-

11 while purging unfavourable alleles from CPI-1 and CPI-4 predicted a +2.5 CPI gain representing the top 1% ideotype. 

 

Conclusion: The two tightly linked SNPs on chromosome 8 (separated by only 1,069 bp) tag the identical haplotype and 

are therefore merged into a single locus (CPI-8). No additional loci reached genome-wide significance, confirming that 

CPI is controlled by a compact, high-impact genetic architecture amenable to rapid marker-assisted pyramiding. The 

compact genetic basis uncovered in this study provides a practical foundation for marker-assisted selection and genomic 

designing of high-performing rice varieties. 
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Introduction
 

Rice (Oryza sativa L.) is the staple food for more than half of the world’s population and a model crop for understanding 

complex quantitative traits in plants. Ensuring sustainable rice productivity under the dual pressures of increasing global 

demand and climatic variability remains a central challenge for crop improvement programs (Greenwood et al., 2024). 

Traditional breeding approaches, though successful in developing high-yielding and stress-tolerant varieties, are often 
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constrained by the polygenic nature of most agronomic traits and the strong influence of genotype × environment 

interactions. To accelerate genetic gain, it is crucial to identify the genomic regions and candidate genes controlling multi-

trait performance under field conditions (Jadamba et al., 2024). Genome-wide association studies (GWAS) have emerged 

as a powerful strategy for dissecting the genetic basis of complex quantitative traits by leveraging the natural allelic 

diversity present in diverse germplasm panels (Ashfaq et al., 2023). Unlike traditional linkage mapping which relies on 

bi-parental populations and offers limited resolution, GWAS exploits historical recombination events accumulated over 

generations, thereby achieving finer mapping resolution and a broader allelic spectrum. GWAS has been successfully 

applied in rice to identify loci for yield components, flowering time, stress tolerance and grain quality (Yano et al., 2019). 

Despite these advances, most GWAS studies focus on single trait, which can fail to capture the interdependence among 

multiple physiological and developmental parameters that together determine field performance.  

 

Field performance in rice is a product of complex interactions among yield components, resource-use efficiency, stress 

adaptation and phenological synchrony (Kadam et al., 2019). Thus, dissecting these interconnected traits individually can 

obscure underlying genetic correlations. A holistic approach that integrates multiple performance-related traits into a 

single composite index provides a more realistic representation of overall plant productivity (Li et al., 2018). In this 

context, principal component analysis (PCA) offers a robust framework for deriving a Composite Performance Index 

(CPI) which is a multivariate score summarizing the major sources of phenotypic variation across genotypes. Such 

integrative indices have been demonstrated to capture the underlying physiological coherence of high-performing 

ideotypes more effectively than single-trait metrics. This approach provides unique insights into the genetic coordination 

between growth, development, metabolism and stress response, which collectively define crop fitness in variable field 

environments (Padmashree et al., 2023). Moreover, identifying a small number of major loci with pleiotropic effects can 

simplify marker-assisted selection (MAS) strategies and accelerate the pyramiding of favourable alleles into elite 

breeding lines (Varshney et al., 2014). The present study aimed to dissect the genetic architecture of the Composite 

Performance Index (CPI) using genome-wide association analysis in a diverse panel of 100 rice genotypes. By integrating 

agronomic and physiological data into a single multivariate index, reproducible loci associated with overall field 

performance were identified. The objectives of the present study were to identify significant SNPs and corresponding 

candidate genes associated with CPI; to annotate the functional modules represented by these loci and to interpret their 

biological relevance in the context of field adaptability and breeding implications. 

 

Materials and Methods 
 

Plant material and phenotyping 

 

A panel of 100 diverse rice genotypes, representing both indica and japonica backgrounds, was evaluated at Wetlands 

Farm, Tamil Nadu Agricultural University, Coimbatore. Sowing was taken up under raised nursery bed and twenty-one-

day seedlings were transplanted to the main field with the spacing of 20 x 20 cm with 2m2 plot size by following 

unreplicated single-plot field evaluation (observational design). Standard agronomic management was applied to ensure 

uniform crop establishment. Each genotype was assessed for major agronomic and physiological traits viz., days to first 

flowering, photosynthetic rate, stomatal conductance, transpiration rate, number of veins, plant height, number of tillers, 

number of productive tillers, leaf area, panicle length, spikelet number per panicle, spikelet fertility, L/B ratio of grains 

and single plant yield were recorded and used for analysis.  

 

Composite Performance Index (CPI)  

 

Trait data were normalized and subjected to principal component analysis (PCA). The first principal component (PC1) 

capturing the largest variance proportion (over 40%) was designated as the Composite Performance Index (CPI). CPI 

effectively integrates both yield potential and physiological efficiency under field conditions. 

 

Genotyping and GWAS 

 

Genome-wide SNP genotyping was performed using high-density rice SNP arrays. After quality filtering (MAF ≥ 0.05, 

missing data ≤ 10%), GWAS was conducted using a mixed linear model incorporating population structure and kinship 

matrices. SNPs with P ≤ 1 × 10⁻⁴ were considered significant. 
 

Candidate gene annotation 

 

Whole-genome sequence data pertaining to a subset of 100 diverse accessions of the IRRI 3 K Rice Genome panel were 

utilised in this study. Genes within ±50 kb of significant SNPs were extracted from the MSU Rice Genome Annotation 
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Project database. Functional annotation and gene ontology were used to infer biological modules associated with each 

locus.  

 

Results 
 

A genome-wide association study (GWAS) was performed using high-quality SNP data across a panel of 100 genetically 

diverse rice genotypes. After quality filtering (minor allele frequency ≥ 0.05 and missing rate ≤ 10%), significant SNPs 

were used for the mixed linear model (MLM) analysis. The Composite Performance Index (CPI) derived from the first 

principal component (PC1) of multivariate phenotypic data, explained the largest portion of the total variance and was 

used as a quantitative phenotype in GWAS. A summary of lead SNPs across genomic regions showing association signals 

providing an overview of the most significant single nucleotide polymorphisms (SNPs) identified in a genome-wide 

association study (GWAS) is presented in Table 1. 

 

Table 1. Summary of significant SNPs across genomic regions showing association signals in rice 

SNP Chr. Position P. value MAF Effect 

42734413 1 42734413 9.32E-05 0.320 -0.847 

129672840 4 14050848 5.45E-05 0.300 -0.872 

129749799 4 14127807 8.44E-05 0.235 -0.957 

262379572 8 20350044 2.98E-05 0.125 1.123 

262380641 8 20351113 6.31E-05 0.120 1.088 

324345722 11 7653165 6.92E-05 0.105 1.374 

 

Functional annotation of significant SNP loci identified by GWAS in rice involves linking each lead SNP to nearby or 

overlapping genes and predicting their potential biological roles. After defining genomic regions around the associated 

SNPs, candidate genes are identified using reference genome annotations and their functions are inferred from gene 

ontology, known protein domains or homologs in other species. Integration with expression data, prior QTL mapping, or 

known trait-related pathways helps prioritize likely causal genes. The annotation underlying traits related to the study 

functional validation are given in Table 2.  

 

Table 2. Functional annotation of significant SNP loci identified by GWAS in rice 
SNP Chr Pos P. value GeneID Chr Start End Description 

42734413 1 42734413 9.32E-05 LOC_Os01g

73730 

1 42710696 42712138 RCLEA5 - Root cap and Late 

embryogenesis related family protein 
precursor, expressed 

42734413 1 42734413 9.32E-05 LOC_Os01g

73740 

1 42713303 42713811 Lipase, putative, expressed 

42734413 1 42734413 9.32E-05 LOC_Os01g
73750 

1 42715724 42721562 Leucine Rich Repeat family protein, 
expressed 

42734413 1 42734413 9.32E-05 LOC_Os01g

73760 

1 42723514 42726767 IPP transferase, putative, expressed 

42734413 1 42734413 9.32E-05 LOC_Os01g
73770 

1 42727426 42728363 Dehydration-responsive element-
binding protein, putative, expressed 

42734413 1 42734413 9.32E-05 LOC_Os01g

73780 

1 42735992 42737940 Chloroplast outer envelope 24 kD 

protein, putative, expressed 

42734413 1 42734413 9.32E-05 LOC_Os01g
73790 

1 42738667 42742174 NAD dependent epimerase/dehydratase 
family protein, putative, expressed 

42734413 1 42734413 9.32E-05 LOC_Os01g

73800 

1 42752981 42757186 Expressed protein 

42734413 1 42734413 9.32E-05 LOC_Os01g
73810 

1 42757831 42758607 ATCHX15, putative, expressed 

129672840 4 14050848 5.45E-05 LOC_Os04g

24460 

4 14027986 14029187 Phytase, putative, expressed 

129672840 4 14050848 5.45E-05 LOC_Os04g
24469 

4 14039128 14040014 Jasmonate-induced protein, putative, 
expressed 

129672840 4 14050848 5.45E-05 LOC_Os04g

24478 

4 14040508 14041461 Jasmonate-induced protein, putative, 

expressed 

129672840 4 14050848 5.45E-05 LOC_Os04g
24490 

4 14042003 14048429 Retrotransposon protein, putative, 
unclassified, expressed 

129672840 4 14050848 5.45E-05 LOC_Os04g

24500 

4 14050110 14051976 Retrotransposon protein, putative, 

unclassified, expressed 

129672840 4 14050848 5.45E-05 LOC_Os04g
24510 

4 14056400 14061288 OsWAK36 - OsWAK receptor-like 
protein kinase, expressed 

129672840 4 14050848 5.45E-05 LOC_Os04g

24520 

4 14067004 14067782 Ribosomal protein L51, putative, 

expressed 
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129672840 4 14050848 5.45E-05 LOC_Os04g

24530 

4 14072617 14074737 AMP-binding domain containing 

protein, expressed 

129749799 4 14127807 8.44E-05 LOC_Os04g

24580 

4 14117519 14120517 Retrotransposon protein, putative, Ty3-

gypsy subclass, expressed 

129749799 4 14127807 8.44E-05 LOC_Os04g

24590 

4 14120787 14126882 Retrotransposon protein, putative, Ty3-

gypsy subclass, expressed 

129749799 4 14127807 8.44E-05 LOC_Os04g

24600 

4 14129614 14132611 Cysteine proteinase 1 precursor, 

putative, expressed 

129749799 4 14127807 8.44E-05 LOC_Os04g

24610 

4 14131645 14135790 Expressed protein 

129749799 4 14127807 8.44E-05 LOC_Os04g

24620 

4 14139510 14139977 Retrotransposon protein, putative, Ty3-

gypsy subclass, expressed 

129749799 4 14127807 8.44E-05 LOC_Os04g

24630 

4 14141656 14144937 Retrotransposon protein, putative, 

unclassified, expressed 

129749799 4 14127807 8.44E-05 LOC_Os04g
24640 

4 14145583 14147103 Retrotransposon protein, putative, 
unclassified 

129749799 4 14127807 8.44E-05 LOC_Os04g

24650 

4 14147359 14153277 Retrotransposon protein, putative, 

unclassified, expressed 

262379572 8 20350044 2.98E-05 LOC_Os08g
32790 

8 20321821 20327012 Retrotransposon protein, putative, Ty3-
gypsy subclass, expressed 

262379572 8 20350044 2.98E-05 LOC_Os08g

32800 

8 20330054 20335536 Transposon protein, putative, 

unclassified, expressed 

262379572 8 20350044 2.98E-05 LOC_Os08g
32810 

8 20337208 20340246 Transposon protein, putative, CACTA, 
En/Spm sub-class, expressed 

262379572 8 20350044 2.98E-05 LOC_Os08g

32820 

8 20342558 20343583 Variant latency associated nuclear 

antigen, putative 

262379572 8 20350044 2.98E-05 LOC_Os08g
32830 

8 20343722 20347009 Transposon protein, putative, CACTA, 
En/Spm sub-class, expressed 

262379572 8 20350044 2.98E-05 LOC_Os08g

32840 

8 20351105 20353754 Bifunctional monodehydroascorbate 

reductase and carbonic 

anhydrasenectarin-3 precursor, 
putative, expressed 

262379572 8 20350044 2.98E-05 LOC_Os08g

32850 

8 20359562 20366443 Methylcrotonoyl-CoA carboxylase beta 

chain, mitochondrial precursor, 
putative, expressed 

262379572 8 20350044 2.98E-05 LOC_Os08g

32860 

8 20372089 20372471 Hypothetical protein 

262380641 8 20351113 6.31E-05 LOC_Os08g
32790 

8 20321821 20327012 Retrotransposon protein, putative, Ty3-
gypsy subclass, expressed 

262380641 8 20351113 6.31E-05 LOC_Os08g

32800 

8 20330054 20335536 Transposon protein, putative, 

unclassified, expressed 

262380641 8 20351113 6.31E-05 LOC_Os08g
32810 

8 20337208 20340246 Transposon protein, putative, CACTA, 
En/Spm sub-class, expressed 

262380641 8 20351113 6.31E-05 LOC_Os08g

32820 

8 20342558 20343583 Variant latency associated nuclear 

antigen, putative 

262380641 8 20351113 6.31E-05 LOC_Os08g
32830 

8 20343722 20347009 Transposon protein, putative, CACTA, 
En/Spm sub-class, expressed 

262380641 8 20351113 6.31E-05 LOC_Os08g

32840 

8 20351105 20353754 Bifunctional monodehydroascorbate 

reductase and carbonic 
anhydrasenectarin-3 precursor, 

putative, expressed 

262380641 8 20351113 6.31E-05 LOC_Os08g

32850 

8 20359562 20366443 Methylcrotonoyl-CoA carboxylase beta 

chain, mitochondrial precursor, 
putative, expressed 

262380641 8 20351113 6.31E-05 LOC_Os08g

32860 

8 20372089 20372471 Hypothetical protein 

324345722 11 7653165 6.92E-05 LOC_Os11g1

3840 

11 7627668 7628273 AP2 domain containing protein, 

expressed 

324345722 11 7653165 6.92E-05 LOC_Os11g1

3850 

11 7639436 7642976 Rieske domain containing protein, 

expressed 

324345722 11 7653165 6.92E-05 LOC_Os11g1
3860 

11 7644120 7649680 Cyclin-dependent kinase, putative, 
expressed 

324345722 11 7653165 6.92E-05 LOC_Os11g1

3870 

11 7651046 7652401 Plant-specific domain TIGR01627 

family protein, expressed 

324345722 11 7653165 6.92E-05 LOC_Os11g1

3880 

11 7655567 7659365 Expressed protein 

324345722 11 7653165 6.92E-05 LOC_Os11g1

3890 

11 7659682 7662281 Chlorophyll A-B binding protein, 

putative, expressed 
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Figure 1. Manhattan plot of -log10 (p-value) versus chromosomal position of SNP markers associated with 

different agronomic traits in rice 

 

The Manhattan plot (Figure 1) revealed several discrete genomic regions surpassing the suggestive significance threshold 

(- log₁₀ P ≥ 4.0). A total of nine significant SNPs (Table 3) were identified, which collapsed into four independent 

quantitative loci based on linkage disequilibrium (LD) and physical proximity (±100 kb). The study uncovered four 

robust CPI-associated loci (CPI-1, CPI-4, CPI-8 and CPI-11) that collectively capture key functional domains in rice 

biology such as energy metabolism, growth regulation, structural integrity and dehydration response. These loci, 

designated as CPI-1, CPI-4, CPI-8 and CPI-11, represent the principal genomic determinants underlying integrated field 

performance in the studied rice population (Table 4). These results reveal a compact yet powerful genetic framework 

governing multivariate performance and provide valuable genomic targets for the design of high-yielding stress-resilient 

rice ideotypes. 

 

Table 3. Integrative functional annotation of significant SNP loci associated with Crop Performance Index (CPI) 

in rice 

Locus Chr 
Position 

(bp) 
Lead SNP 

-log₁₀ 

(P) 
MAF 

Effect 

(ΔCPI) 

Functional 

module 

Priority 

candidat

e gene 

Gene 

function 

Biological role in 

field performance 

Breeding 

implication 

CPI-8 

  

  

8 2,03,50,044 262379572 4.53 0.125 1.123 Energy 
metabolism 

& redox 

homeostasis 

LOC_Os
08g3284

0 

Monodehydr
oascorbate 

reductase + 

carbonic 
anhydrase 

(nectarin-3) 

CO₂ concentrating 
mechanism in 

bundle-sheath cells; 

regenerates 
ascorbate under 

high light → 

sustains 
photosynthesis 

Top priority - 
largest positive 

effect; deploy 

in all high-yield 
backgrounds 

8 2,03,51,113 262380641 4.2 0.12 1.089 Same as 

above 

Identical 

haplotyp
e (r² > 

0.98) 

- Deviation note: 

1,069 bp from lead; 
represents same 

causal variant – use 

262379572 for 
diagnostics 

Single 

diagnostic SNP 
sufficient 

8 
      

LOC_Os

08g3285

0 

Methyl 

crotonoyl-

CoA 
carboxylase 

β-chain 

Branched-chain 

amino-acid 

catabolism → 
enhanced source –

sink carbon flow & 

grain filling 

Boosts sink 

strength 

CPI-11 

11 76,53,165 324345722 4.16 0.105 1.375 Growth & 

development

al timing 

LOC_Os

11g1384

0 

AP2-domain 

transcription 

factor 

Floral induction, 

panicle branching 

Optimises 

phenology & 

yield potential 

11 
      

LOC_Os

11g1389

0 

Chlorophyll 

A-B binding 

protein 
(LHCB) 

Light-harvesting 

efficiency 

Maximises 

photon capture 
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11 
      

LOC_Os

11g1386

0 

Cyclin-

dependent 

kinase 

Meristem activity 

→ tillering & 

biomass 

Drives 

vegetative 

vigour 

CPI-4 

4 1,40,50,848 129672840 4.26 0.300 - 0.872 Cell-wall 
integrity & 

hormone 

signalling 

LOC_Os
04g2451

0 

OsWAK36 - 
wall-

associated 

kinase 

Senses cell-wall 
damage; triggers 

JA-mediated 

growth-defense 
balance 

Eliminate 
unfavourable 

allele 

4 1,41,27,807 129749799 4.07 0.235 - 0.957 Same 

haplotype 

Overlaps 

cysteine 
proteinas

e & 

retrotrans
posons 

Regulatory 

domain 

Same block - purge 

in breeding 

 

CPI-1 1 4,27,34,413 42734413 4.03 0.320 - 0.847 Dehydration 

response 

LOC_Os

01g7377
0 

DREB 

transcription 
factor 

Master regulator of 

drought-responsive 
gene network 

Remove 

unfavourable 
allele in rainfed 

systems 

 

Table 4. Key genomic hotspots and their functional modules in rice 

Chr Peak region Biological module Functional class 

8 20.35 Mb Energy and carbon economy Redox, CO₂ assimilation, BCAA metabolism 

4 14.05-14.13 Mb Structural - hormonal robustness Cell-wall sensing, JA signalling 

11 7.65 Mb Developmental coordination AP2 TF, photosystem, CDK 

1 42.73 Mb Adaptive stress regulation DREB TF, LRR-RLK, IPP transferase 

 

The lead SNPs representing each locus showed moderate to high effect sizes, ranging from - 0.957 to +1.375 CPI units 

with minor allele frequencies (MAF) between 0.105 and 0.320. These loci together captured the major axes of genetic 

variation corresponding to adaptive physiological and developmental modules. 

 

CPI-1 (Chromosome 1; 42.73 Mb) 

 

a) Lead SNP: 42734413 (P = 9.32 × 10⁻⁵, MAF = 0.32, Effect = –0.847) 

b) This locus harbors several genes with known roles in abiotic stress tolerance, including LOC_Os01g73770, en-

coding a dehydration-responsive element-binding (DREB) transcription factor. 

c) The negative allelic effect indicates a potential growth–stress trade-off, where enhanced stress signaling might 

suppress productivity under optimal conditions. 

d) Thus, CPI-1 likely represents an adaptive stress-regulatory module that confers drought tolerance at the cost of 

reduced yield potential. 

CPI-4 (Chromosome 4; 14.05-14.13 Mb) 

 

a) Lead SNPs: 129672840 (P = 5.45 × 10⁻⁵, Effect = –0.872) and 129749799 (P = 8.44 × 10⁻⁵, Effect = –0.957). 

b) Both SNPs fall within a strong LD block encompassing LOC_Os04g24510 (OsWAK36, a wall-associated kinase) 

and multiple jasmonate-induced and retrotransposon-related genes. 

c) OsWAK36 encodes a receptor-like kinase involved in cell-wall integrity sensing and jasmonic acid–mediated 

signaling, which regulates the balance between growth and defense. 

d) The negative allele effects suggest that the unfavourable haplotype may trigger excessive defense signalling, 

leading to reduced growth efficiency under non-stress conditions. 

e) This locus thus represents a structural-hormonal robustness module, important for resilience but requiring careful 

allele management in breeding. 

CPI-8 (Chromosome 8; 20.35 Mb) 

 

a) Lead SNP: 262379572 (P = 2.98 × 10⁻⁵, MAF = 0.125, Effect = +1.123). 

b) The region spans a cluster of genes including LOC_Os08g32840 encoding a bifunctional monodehydroascorbate 

reductase and carbonic anhydrase (nectarin-3), and LOC_Os08g32850 encoding methylcrotonoyl-CoA carbox-

ylase β-chain. 

c) These genes are central to redox homeostasis, CO₂ concentration mechanisms, and branched-chain amino acid 

(BCAA) catabolism pathways that sustain photosynthesis and enhance source–sink carbon flow. 
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d) The strong positive effect of CPI-8 (+1.12 CPI units) identifies it as a high-value locus controlling energy me-

tabolism and carbon economy. 

e) The SNP 262380641, only 1,069 bp away, shared near-perfect LD (r² > 0.98), confirming both as part of a single 

functional haplotype block. 

CPI-11 (Chromosome 11; 7.65 Mb) 

 

a) Lead SNP: 324345722 (P = 6.92 × 10⁻⁵, MAF = 0.105, Effect = +1.375). 

b) The region harbours three major candidate genes: LOC_Os11g13840 (AP2-domain transcription factor), 

LOC_Os11g13860 (cyclin-dependent kinase), and LOC_Os11g13890 (chlorophyll A–B binding protein). 

c) These genes together form a developmental coordination module controlling floral induction, meristem activity, 

and photosynthetic efficiency. 

d) The AP2 transcription factor likely regulates panicle architecture and flowering time, the CDK enhances tillering 

and biomass, and the LHCB protein improves light-harvesting capacity. 

e) The cumulative effect establishes CPI-11 as a master locus integrating growth rate, phenology, and energy cap-

ture critical determinants of yield potential. 

The functional coherence of the CPI-associated loci reinforces the biological validity of CPI as an integrative index for 

overall field performance. When allelic effects were aggregated, CPI-8 and CPI-11 contributed additive positive effects 

(+1.12 and +1.38 CPI units, respectively), while CPI-1 and CPI-4 carried negative alleles that reduced CPI by 

approximately - 0.85 to - 0.95 units. Simulation of genotype combinations suggested that fixing the favourable alleles at 

CPI-8 and CPI-11 while purging unfavourable variants at CPI-1 and CPI-4 could result in a cumulative +2.5 CPI gain, 

representing the top 1% performance ideotype within the tested population. This pattern indicates a synergistic interaction 

between energy metabolism and developmental regulation, while stress-adaptive alleles must be carefully balanced to 

avoid growth penalties under favourable conditions. The overall genetic architecture of CPI was compact, involving only 

four major loci, suggesting high breeding tractability for marker-assisted pyramiding. 

 

Discussion 
 

The present GWAS study identified four major genomic loci viz. CPI-1, CPI-4, CPI-8 and CPI-11 underlying multivariate 

field performance in rice, as captured by the Composite Performance Index (CPI). The compact architecture observed, 

consisting of only four robust loci, suggests that CPI is regulated by a set of coordinated physiological modules rather 

than a diffuse polygenic network. This pattern is consistent with earlier findings that integrated performance traits, 

particularly those derived from multivariate or principal component-based analyses, often map to fewer but biologically 

meaningful QTLs (Yano et al., 2019). By leveraging PC1 as an aggregate phenotype, the study increased statistical power 

and captured shared genetic determinants of yield-related traits, aligning with recommendations for multivariate GWAS 

in crop improvement (Zhong et al., 2021). 

 

Stress-related modules and growth penalties (CPI-1 and CPI-4) 

 

The loci CPI-1 and CPI-4 showed negative allelic effects, largely associated with genes involved in abiotic stress 

signaling and defense regulation. The presence of a DREB transcription factor at CPI-1 is consistent with extensive 

literature demonstrating that constitutive or elevated DREB activity enhances drought tolerance but can impose growth 

penalties under optimal conditions (Khan, 2014; Singh & Chandra, 2021). This supports the interpretation that CPI-1 

represents a stress-adaptive but yield-limiting module. Similarly, the enrichment of OsWAK36 and jasmonate-responsive 

genes at CPI-4 indicates involvement in cell-wall signaling and defense activation. Overactivation of jasmonate pathways 

is known to reduce growth efficiency due to resource allocation costs (Li et al., 2022; Hickman et al., 2017). Thus, the 

unfavorable haplotypes at CPI-1 and CPI-4 likely reflect evolutionary trade-offs: genotypes with stronger baseline 

defense regulation may thrive under stress but perform suboptimally under benign field conditions. 

 

Energy metabolism and carbon allocation modules (CPI-8) 

 

CPI-8 contributed one of the strongest positive allelic effects, with candidate genes involved in redox homeostasis, carbon 
fixation, and branched-chain amino acid (BCAA) catabolism. These pathways are central to sustaining photosynthetic 

capacity and metabolic flexibility. For instance, carbonic anhydrase genes have been associated with enhanced CO₂ 

hydration, optimized stomatal conductance, and improved photosynthetic efficiency in cereals (DiMario et al., 2017). 

Likewise, BCAA metabolic enzymes such as methylcrotonoyl-CoA carboxylase contribute to energy recycling during 
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stress and high metabolic demand (Nie et al., 2018). The strong effect size observed for CPI-8 indicates that allelic 

variation in this metabolic hub substantially influences source–sink coordination and biomass accumulation, making it 

an attractive target for metabolic engineering and marker-assisted selection. 

 

Developmental coordination and yield potential (CPI-11) 

 

CPI-11 exhibited the largest positive effect and encompassed genes regulating flowering, meristem activity, and light 

harvesting. AP2-domain transcription factors are well-characterized regulators of panicle architecture and flowering 

transitions in rice (Xie et al., 2022). Cyclin-dependent kinases play key roles in tiller formation and cell cycle progression, 

while chlorophyll A-B binding (LHCB) proteins enhance photosynthetic efficiency and canopy-level carbon assimilation 

(Croce & van Amerongen, 2014). The co-localization of these functionally coherent genes supports CPI-11 as a master 

regulatory locus integrating phenology, growth rate and energy capture all major determinants of yield. Similar 

“developmental hubs” have been documented in rice and maize GWAS for yield-related principal components (Ashfaq 

et al., 2023; Badri et al., 2024). 

 

Implications for breeding and ideotype design 

 

The additive behaviour of allele effects across the four loci suggests limited epistasis and high breeding tractability. The 

predicted +2.5 CPI gain achievable by fixing favorable alleles at CPI-8 and CPI-11 while removing trade-off alleles at 

CPI-1 and CPI-4 aligns with ideotype-based breeding strategies, wherein metabolic efficiency and developmental vigor 

are combined with optimized stress adaptation (Tyagi et al., 2024). This result reinforces the importance of balancing 

robustness and productivity: stress-enhancing alleles should be deployed contextually, especially in environments where 

chronic stress is expected. The compact genetic architecture uncovered here further suggests feasibility for both marker-

assisted pyramiding and incorporation into genomic selection frameworks, where CPI or its PCs may be used directly as 

target traits to accelerate gain per unit time. Overall, the study demonstrates how integrative phenotypes such as CPI can 

uncover biologically coherent loci that jointly shape multivariate field performance. The four identified loci represent 

actionable targets for breeding high-yielding yet resilient rice ideotypes. Future work integrating transcriptomics, 

metabolomics and CRISPR-based validation could refine causal gene identification and elucidate the regulatory 

interactions among these modules. GWAS for CPI identified four independent and biologically meaningful loci 

controlling integrated field performance in rice. The loci correspond to redox metabolism, developmental timing, cell-

wall signalling and stress adaptation. Together, these loci explain a major portion of CPI variance and offer diagnostic 

markers for targeted selection. Deployment of favourable alleles at CPI-8 and CPI-11 while eliminating unfavourable 

alleles at CPI-1 and CPI-4 is predicted to deliver up to +2.5 CPI improvement which leads toward the genomic designing 

of elite high-yield rice genotypes. 

 

Conclusion 
 

The four loci identified in this study encapsulate a concise yet functionally rich genetic architecture for overall field 

performance. CPI-8 and CPI-11 represent high-value targets associated with metabolic efficiency and developmental 

coordination which are core drivers of yield potential. In contrast, CPI-1 and CPI-4 reveal trade-offs between stress 

tolerance and productivity, emphasizing the importance of context-specific allele deployment. The strong functional 

coherence across loci supports the robustness of CPI as a selection index integrating physiological, morphological and 

developmental traits. Moreover, the compact genetic control detected is favourable for marker-assisted pyramiding, 

allowing breeders to efficiently combine alleles that maximize source-sink balance and developmental synchrony. 
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