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Seventeen medium-maturing lowland rice genotypes along with a check variety 
were raised in a randomized complete block design of three replications and 
assessed for yield stability and performance under rain fed lowland conditions at 
Woreta, Pawe, Maitsebri, Jimma and Assosa. AMMI analysis of variance indicated 
that environments, genotypes and their interaction accounted for 43.06%, 12.03% 
and 22.04% of the total sum of squares (SS) for grain yield, respectively. The first 
four interaction principal component axes were significant and together explained 
85.8% of interactions SS. Averaged over environments, genotype G16 had the 
highest yield of 6.56 t ha-1 , G2 (6.32 t ha-1), G6 (5.49 t ha-1) and G7 (5.49 t ha-). 
Genotypes G5, G6, G7, G14 and G16 had lower AMMI stability value and yield 
stability index. In AMMI 1 and AMMI 2 biplots G6, G7 and G16 were found to be 
high yielding and stable while G2 was less stable but high yielding. Thus, 
genotypes G2, G6 and G16 were considered as candidate varieties and verified, out 
of which G16 was approved for release by the name ‘Abay’. Genotypes G2, G6, and 
G7can be used as potential parent materials in rice breeding program. 

Key words: lowland rice, GE interaction, AMMI analysis, grain yield  

 
INTRODUCTION 

Rice (Oryza sativa L.) is an economically and culturally 
important crop supporting more than half the world’s 
population (Barker et al., 1985). Its consumption is growing 
faster than any other food crops in Africa and it is also a cash 
crop providing employment in more than 40 African countries 
(AfricaRice, 2017). In Ethiopia, rice is one of the most 
important strategic food security crops and it becomes the 
source of income and employment along the value chain. The 
crop is predominantly cultivated by small scale farmers. 
Currently, private investors also showed great interest in rice 
business probably due to policy changes and huge local as 
well as international market opportunity. A rapid shift in food 

habit for rice consumption has sharply increased the demand 
for the grain in most regions of the country. Rice is used as 
food in a variety of forms, including injera a flat and thin 
bread, bread, local drinks (tella and areki), porridge, kinche, 
cakes, and as table rice. In addition, by-products such as husk 
used for fuel, charcoal making and soil amendment; rice bran 
for beef fattening and poultry feed; and rice straw as major 
source of animal feed. In the last ten years (2011 to 2020) 
only, rice cultivation in Ethiopia has significantly increased in 
area, total production and productivity by 178.3%, 202.7% 
and 26%, respectively(CSA, 2011; CSA, 2020). Increases were 
recorded in all rice producing regions of the country but the 
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lions share comes from Amhara region which contributed 
about 63% of annual production (CSA, 2020). Currently, total 
annual production and productivity have reached about 
268,223 thousand tons and 3.15 t ha-1, respectively, covering 
85,288.87ha of land cultivated by 230,496 rice farmers (CSA, 
2020). Current production systems comprise predominantly 
of rainfed lowlands and uplands, with minor contribution 
from irrigated rice. Despite an increase in area expansion and 
domestic production of rice, it is not yet able to address local 
demands and thus, rice import tended to rise drastically. Every 
year, the government invests huge amount of foreign currency 
to import milled rice (Addis et al., 2018). 
 
On the other hand, the rapid area expansion and the presence 
of untapped highly suitable land for rice cultivation; about 
5million ha for rain fed and 3 million ha for irrigated rice 
(MoARD, 2010) shades a light of hope that the coming years 
will be brighter than the previous. Because of the expansion of 
the crop in diverse environmental conditions, relative 
performance of the rice varieties exhibited variation as they 
are evaluated at different sites over years. The variations in 
the performance of varieties are attributed to the effects of 
genotype by environment (GE) interaction (Falconer and 
Mackay, 1996). This type of interaction reduces selection 
efficiency and the accuracy of new variety recommendation 
(Crossa and Cornelius, 1997). Several statistical methods are 
used to minimize the effect of the GE interaction on the 
selection of cultivars and the prediction of the phenotypic 
response to diverse environments. The additive main effect 
and multiplicative interaction (AMMI) method which 
integrates analysis of variance (ANOVA) and principal 
component analysis (PCA) into a unified approach is one of 
the most important statistical tools to analyze multi-
environment trials (Zobel et al., 1988; Crossa et al., 1990; 
Gauch and Zobel, 1996). AMMI analysis of variance enables us 
study the main effects of genotypes and environments and, a 
principal component analysis for the residual multiplicative 
interaction among genotypes and environments. Furthermore, 
AMMI quantifies the contribution of each genotype and 
environment to the sum of squares, and provides an easy 
graphical interpretation of the results by the biplot technique 
to concurrently classify genotypes and environments (Zobel et 
al., 1988). Therefore, with this technique, one can readily 
identify productive cultivars with wide or narrow adaptability, 
as well as identify mega-environments in which to conduct 
field trials (Gauch and Zobel, 1996; Ferreira et al., 2006). The 
objective of this study was to study stability and performance 
of medium maturing lowland rice genotypes in diverse 
environments based on the AMMI method.  
 
MATERIALS AND METHODS 
 
This experiment was conducted at Woreta, Pawe, Maitsebri, 
Assosa, and Jimma from 2013 to 2015. Including one check 
(Gumara), a total of 18 lowland medium maturing rice 
genotypes (Table 1) were evaluated for grain yield. At each 
location, the experiment was laid out using a randomized 
complete block design of three replications. Seeds of each 
genotype were hand drilled at the rate of 60 kg ha-1 in a plot 
size of 7.5m2, with a spacing of 20cm between rows. Each 
experimental plot was with six rows of 5m long each. 

Fertilizers (Urea and DAP) were applied as per to local 
recommendations. DAP was applied all at planting while Urea 
was used in three splits. Other crop management and 
protection practices were applied to the entire experimental 
area uniformly when necessary. Two border rows were 
excluded in data collection and grain yield per plot data were 
collected by harvesting the entire central four rows and 
estimated based on adjustment at 14% moisture level and 
converted to ton ha-1.  
 
The grain yield data for eighteen rice genotypes at twelve 
environments were subjected to analysis of variance using the 
General Linear Model (PROC GLM) of the SAS Procedure 
version 9.0 of the SAS software (SAS 2002) to determine 
significant variation among genotypes and environments and 
their interaction. Mean performance of different traits were 
separated using Least Significant Difference (LSD) method at 
0.05 level of probability. Additive main effects and 
multiplicative interaction (AMMI) model was applied to assess 
the effect of genotype by environment interaction, 
adaptability and stability of rice genotypes using GenStat 16th 
version statistical package (GenStat, 2013). In this study, 
AMMI stability value (ASV) was estimated for each genotype 
according to the relative contributions of the principal 
component axis scores (IPCA1 and IPCA2) to the interaction 
sum of squares according to Purchase et al. (2000) as 
described below:  
 

ASV=√[
SSIPCA1

SSIPCA2
 (IPCA1Score)] 2 + (IPCA2Score)2 

 
Where, ASV= AMMI stability value; SS= sum of square; IPCA1 
and IPCA2= the first and the second interaction principal 
component axes, respectively.  

 
Table 1. Description of 18 rice genotypes evaluated at 

twelve environments over three years 
No. Genotypes  Code Source 
1 WAS 161-B-6-B-B-1-B (NERICA-L-38) G1 Africa Rice 
2 WAB 326-B-B-7-H1 G2 Africa Rice 
3 IR 83372-B-B-115-4 G3 IRRI 
4 IR 83377-B-B-93-3 G4 IRRI 
5 IR 83383-B-B-141-2 G5 IRRI 
6 IR 83372-B-B-115-3 G6 IRRI 
7 IR 83383-B-B-141-1 G7 IRRI 
8 IR80420-B-22-2 G8 IRRI 
9 IR80463-B-39-3 G9 IRRI 
10 IR 72768-8-1-1 G10 IRRI 
11 IR 75518-18-1-2-B G11 IRRI 
12 IR 75518-84-1-1-B G12 IRRI 
13 YUNLU N0.33 G13 IRRI 
14 IR 81047-B-106-2-4 G14 IRRI 
15 WAS 161-B-6-B-1 (NERICA-L-36) G15 Africa Rice 
16 ARCCU16Bar-21-5-12-3-1-2-1 G16 Africa Rice 
17 ARCCU16Bar-13-2-16-2-1-1 G17 Africa Rice 
18 GUMARA (check) G18 Ethiopia 

 
 
The larger the IPCA score is, either negative or positive, the 
more adapted a genotype is to a certain environment. Smaller 
ASV scores indicate a more stable genotype across 
environments (Purchase et al., 2000; Farshadfar et al., 2011). 
Yield stability index (YSI) was also estimated using the sum of 
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Table 2. Description of the test locations in North West Ethiopia 
Location Latitude longitude Elevation 

(m a.s.l) 
Rain fall 
(mm) 

Mean temperature (oC) 
Min Max 

Woreta 11° 58' N 37° 41' E 1810 1300 11.5 27.9 
Pawe 11o 19’ 15’’N 36o 24’ 30’’E 1091 1457 17.2 32.8 
Maitsebri 11o 08’ N 38o 08’ E 1350 1296 15.0 36 
Jimma 7° 46' N 36° 00' E 1753 1561 9.0 28 
Assosa 10o 03’N 34o 59’E 1590 1132 14.4 28.9 

a.s.l: above sea level, mm: millimeter. 
 

Table 3. Combined ANOVA for grain yield (t ha-1) of 18 lowland rice genotypes at twelve environments from 2013 to 
2015 main cropping season 

Source of variation  DF  SS  MS  F value  %TSS  

Genotype (G)  17  219.403842  12.9061084  13.33***  
12.03  

Environment (E)  11  784.955224  71.3595658  73.68***  
43.05  

G x E  187  402.101332  2.1502745  2.22***  
22.05  

Error  430  416.479377  0.968557    

Total  647  1823.1892     

DF: degree of freedom, SS: sum of square, MS: mean square, %TSS: total sum of square explained in percentage 
 

the ranking based on yield and ranking based on the AMMI 
stability value i.e YSI= RASV+RY, where RASV is the rank of the 
genotypes based on the AMMI stability value; RY is the rank of 
the genotypes based on yield across environments 
(Tumuhimbise et al., 2014) and low values of YSI show 
desirable genotypes with high mean grain yield and stability.  
 
 
RESULTS AND DISCUSSION 
 
Variation and mean performance 
 
The combined analysis of variance revealed significant 
variation among genotypes, environments and genotype by 
environment (GE) interaction for mean grain yield of 18 
lowland rice genotypes (Table 3). The relative contribution of 
environment, genotype, and GE interaction indicated that 
environment was the most important source of variation for 
grain yield performance. Environment explained 43.05% of 
total sum of square (SS) of grain yield while GE interaction 
accounted for 22.05% and the least was by the genotype 

(12.03%) (Table 3). This large yield variation explained by 
environments indicated that the environments were diverse 
and the major part of variation in grain yield could be 
attributed to environmental changes. Similarly, Zemede and 
Mekbib (2021) reported highly significant variations among 
genotypes, environments and their interactions on grain yield 
and the largest variation was accounted by environments 
(60.6%), followed by GEI (20.6%) and then genotypes 
(18.2%). In contrary to our report, Bose et al. (2014) and 
Akter et al. (2014) found out that  larger portion of variation 
in grain yield was attributed to the genotypes, followed by GE 
interaction and the least to the environments. In the other 
hand, Sharifi et al. (2017) reported that 41% of the total sum 
of squares was explained by GE interaction effects, 
environmental effects (29%), and genotype effects (30%) 

using nine promising rice genotypes. Similarly, Huang et al. 
(2021) reported that the highest variation in grain yield of 
rice genotypes was attributed to GE interaction (37.1%), 
followed by genotype (35.6%) and environments (16.5%). 
They further explained that the significances variation by GE 
interaction effect revealed that the genotypes had variable 
performance in the tested environments, i.e., a change in the 
average rank of the genotypes was observed among the 
environments which suggested running a more refined 
analysis to understand the magnitude and pattern of GE 
interaction. 
 
 
Table 4 presented the mean grain yield performance of 18 
lowland rice genotype including one improved lowland rice 
variety as a check (Gumara) evaluated at Woreta, Maitsebri, 
Jimma, Pawe and Assosa from 2013 to 2015 during the main 
cropping seasons (May to November). The mean grain yield of 
rice genotypes averaged over environments indicated that 
G16 and G17 had the highest (6.56 t ha-1) and the lowest (4.21 
t ha-1) mean grain yield, respectively, with grand mean yield of 

5.07 t ha-1 (Table 4). Across all environments, mean grain yield 
performance of G18 (check variety) was 4.64 t ha-1. Except for 
G12 (4.41 t ha-1) and G17 (4.21 t ha-1), mean grain yield of all 
genotypes across environments was higher than the check 
variety (Table 4). However, only two genotypes, G2 (6.32 t ha-

1) and G16 (6.56 tha-1) were significantly higher than the 
check variety in terms of mean grain yield, with grain yield 
advantage of 41.4% and 36.2%, respectively. Although not 
significant, two other genotypes, G6 (5.49t ha-1) and G7 (5.49t 
ha-1) also gave appreciably higher mean yield over the check 
variety with yield advantage of 18.3% (Table 4). Considering 
the environment, the mean yield of environments across 
genotypes ranged from 3.03 t ha-1 at E1 to 7.45 t ha at E8. 
Furthermore, E8 and E9 were the highest yielding 
environments with mean yield of 7.45 t ha-1 and 6.26 t ha-1, 
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respectively, whereas E1and E10 were found to be the lowest 
yielding environments, with mean yield of 3.03t ha-1 and 3.80 
t ha-1, respectively (Table 4). Genotype G16 performed the 
best in mean yield at ten of the twelve of environments; E1, 
E2, E4, E5, E6, E7, E9, E10, E11and E12. Similarly, other better 
performing genotypes include G6 at E3, E4 and E11; G7 at E3, 
E9 and E12, and G8 at E1, E3 and E8, each ranked among the 
top three at three of the twelve environments (Table 4). 

Moreover, G2 gave the best mean yield at six of twelve 
environments; E1, E5, E7, E10, E11and E12 (Table 4). Even the 
check variety (G18) was found to be one of top three high 
yielding genotypes at three environments namely E4, E8 and 
E10. However, genotypes including G3, G5, G10, G12, G13, G15 
and G17 could not rank among the top three genotypes in any 
of the environments. Results demonstrated that there was a 
rank change of genotypes in mean yield across environments 

which could be attributed to the seasonal variability. For 
instance, the mean grain yield across 18 genotypes at Woreta 
was the least in 2013(3.03 t ha-1) but the highest in 2015 (7.45 
t ha-1). Fogera (Woreta) area often experience terminal 
moisture stress which affected rice grain yield in 2013 but the 
conditions in 2014 and 2015 cropping seasons was relatively 
favorable. This change of ranks in mean yield of genotypes 
indicated the presence of cross over GE interaction across 

environments which need further investigation to understand 
the patterns of GE interactions (Sharifi et al., 2017; Huang et 
al., 2021; Akbarzai et al., 2021; Ohunakin, 2021). 
 
AMMI analysis of variance   
 
To clarify the patterns of GE interaction, the AMMI analysis of 
variance was applied for mean grain yield of rice genotypes. 

Table 4. Mean grain yield of 18 medium maturing lowland rice genotypes at 12 environments 

Genotype 
Environmentsa 

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 Mean 
G1 2.73 4.89 4.59 5.92 3.90 5.69 6.14 6.51 6.80 2.57 4.12 5.02 4.91 
G2 5.86 6.32 6.15 6.42 6.19 6.14 6.40 6.17 6.99 5.49 6.40 7.35 6.32 
G3 2.30 5.44 6.17 2.04 4.59 5.24 2.45 7.88 5.71 4.08 4.60 4.21 4.56 
G4 3.31 6.88 5.52 4.93 5.22 6.16 4.38 7.14 6.59 3.09 2.49 3.95 4.97 
G5 2.39 5.32 5.76 5.26 4.67 6.12 4.76 7.50 6.21 3.66 4.53 4.92 5.09 
G6 2.32 6.22 6.39 6.73 3.91 5.31 5.83 8.41 5.84 3.86 5.27 5.74 5.49 
G7 2.29 5.78 6.27 6.21 4.03 5.69 4.88 8.40 7.67 3.95 4.33 6.38 5.49 
G8 4.53 6.45 6.24 3.77 4.21 6.04 3.18 8.61 6.65 4.01 4.45 4.56 5.22 
G9 2.63 6.93 5.16 3.50 4.31 6.41 3.33 8.81 7.16 3.60 4.06 5.00 5.08 
G10 2.20 5.12 4.95 4.93 3.59 6.05 5.86 5.33 6.70 4.01 3.84 5.93 4.88 
G11 2.59 5.05 5.03 4.95 4.73 6.60 3.97 7.39 6.45 3.35 3.31 4.49 4.83 
G12 2.81 4.26 5.99 3.77 4.14 5.60 2.34 7.37 4.58 3.84 4.48 3.78 4.41 
G13 2.64 5.78 4.79 5.66 4.12 4.30 5.66 7.38 6.24 3.80 4.05 4.14 4.88 
G14 2.51 5.33 4.91 5.30 4.20 5.41 4.63 8.16 7.21 3.60 4.20 3.92 4.95 
G15 2.14 4.92 4.54 5.80 4.04 5.24 5.53 6.27 6.30 2.80 3.27 5.44 4.69 
G16 5.57 6.67 6.22 7.40 6.15 6.29 6.42 8.47 7.20 5.23 6.39 6.66 6.56 
G17 3.14 4.04 4.20 4.58 4.76 4.82 3.83 5.70 4.98 2.95 3.99 3.57 4.21 
G18 2.51 4.66 4.81 6.51 4.28 3.61 3.64 8.62 3.31 4.43 5.20 4.07 4.64 
Mean 3.03 5.56 5.43 5.20 4.50 5.60 4.62 7.45 6.26 3.80 4.39 4.95 5.07 
CV (%) 36.41 12.52 17.87 25.24 14.06 9.90 18.33 18.47 13.19 21.04 24.70 21.10 19.40 
LSD (5%) 1.83 1.16 1.61 2.18 1.05 0.92 1.41 2.28 1.37 1.32 1.80 1.73 1.56 

aE1: Woreta 2013, E2: Maitsebri 2013, E3: Woreta 2014, E4: Jimma 2014, E5: Maitsebri 2014, E6: Pawe 2014, E7: Assosa 
2014, E8: Woreta 2015, E9: Pawe 2015, E10: Maitseberi 2015, E11: Jimma 2015, E12: Assosa 2015. Underlined figures 

indicate the top three high yielding genotypes at each environment. 
 

Table 5. AMMI analysis of variance for grain yield in 18 lowland rice genotypes 

Source DF SS MS %TSS %G x ESS 

Total 647 1823.2 2.818   
Treatments 215 1406.5 6.542** 77.14  
Genotypes 17 219.4 12.906** 12.03  
Environments 11 785 71.36** 43.06  
Interactions 187 402.1 2.15** 22.04  
 IPCA 1  27 151.2 5.6**  37.60 
 IPCA 2  25 94.1 3.765**  23.40 
 IPCA 3  23 66.1 2.874**  16.44 
 IPCA 4  21 33.6 1.599*  8.36 
 IPCA 5  19 18.7 0.985ns  4.65 
 IPCA 6 17 11.7 0.688ns  2.91 
 Residuals  27 9.7 0.36  2.41 
Error 408 383.2 0.939 21.02  

DF: degree of freedom, SS: sum of square, MS: mean square, ns: not significant, TSS: total sum square, G x ESS: genotype by 
environment interaction sum square, *, **, and ***: significant at 0.05, 0.01 and 0.001 levels. 
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The analysis revealed that variances due to genotypes, 
environments, and GE interactions were significant (P<0.01). 
The results also showed that the main effects of genotype and 
environment accounted for 12.03% and 43.06% of the total 
sum of square, respectively, and the GE interaction effect 
accounted for 22.04% of the total sum of squares for grain 
yield (Table 5). The large sum of squares for the environments 
indicates that the environments were diverse and much of the 
variation for grain of genotypes was attributed to the 
environment which is in agreement with the findings of Lakew 
et al. (2017), Akbarzai et al. (2021) and Ohunakin (2021). 
Unlike our result, Bose et al. (2014) and Akter et al. (2014) 
reported that significant variation in grain yield was 
attributed to the genotypes, followed by GE interaction and 
the least to the environments.  In this study, the total of sum of 
square explained by the GE interaction was much smaller than 
that of the environment but larger than that explained by the 
genotype main effect revealing that contribution of the 
environments to the interaction was greater and genotypes 

responded differentially across diverse environmental 
conditions. This phenomenon most frequently affects progress 
in breeding as it limits the association between the phenotype 
and genotypic values of genotypes under investigation (Yan, 
2002). The GE interaction as clearly demonstrated by the 
AMMI model, was further partitioned among the first four 
significant interaction principal component axes (IPCA1 to 
IPCA4) and together explained 85.80% of the total GE 
interaction sum of squares (Table 5). Moreover, though not 
significant, the fifth and sixth interaction principal component 
axes (IPCA5 and IPCA6) together further explained 7.56% of 
GE interaction sum of squares. The IPCA1 alone explained 
37.60% of the GE interaction sum of squares. Similarly, the 
second, third and fourth principal component axes (IPCA2 to 
IPCA4) explained 23.40%, 16.44% and 8.36% of the GE 
interaction sum of squares, respectively (Table 5). As it was 
clearly demonstrated, the interaction of the 18 lowland rice 
genotypes with twelve environments was predicted by the 
first four significant components of genotypes and 

environments, which is in agreement with the reports of 
Sivapalan et al. (2000) and Huang et al. (2021) but in contrary 
to the findings of Gauch and Zobel (1996) which 
recommended that the most accurate model for AMMI can be 
predicted using the first two IPCAs.  
 
AMMI stability analysis  
 
The IPCA1 scores and other stability parameters values along 
with mean grain yield of 18 rice genotype are presented in 
Table 6. As explained by (Bose et al., 2014; Akter et al., 2015; 
Shafiri et al., 2017; Lingaiah et al.,2020; Huang et al., 2021), 
genotypes with smaller IPCA1 scores are assumed to be more 
stable than those with larger scores. Accordingly, G5 was the 
most stable genotype, followed by G7, G11, G14, G17 and G18 
as they had smaller IPCA1 score and ranked as the first six 
more stable genotypes indicating that these genotypes have 
stable performance over twelve environments while G1, G3, 
G8, G9 and G10 were the most unstable genotypes. AMMI 

stability value (ASV) also showed that G5 had the lowest score 
and thus most stable genotype which is in agreement with the 
explanations of Purchase et al. (2000) who proposed that a 
genotype with the least ASV score is the most stable. However, 
mean grain yield performances of stable genotypes were 
lower than the three high yielding genotypes (G2, G6 and G16) 
(Table 6). As reported by Mohammadi et al. (2007) and 
Mohammadi and Amri (2008), stable genotypes don’t 
necessary give higher yield, and hence genotype selection 
should consider both high mean yield and stability. In this 
regard, yield stability index (YSI) which combines ranks based 
on mean yield and ASV should be considered to determine the 
stability of the genotypes with high mean grain yield 
(Tumuhimbise et al., 2014). Accordingly, G4, G5, G7, G14 and 
G16 had the lowest YSI values compared to the other 
genotypes and thus considered as stable and high yielding 
genotypes. Therefore, G6, G7, and G16 were the stable and 
high yielder genotypes across the testing environments (Table 
6).  

Table 6. Ranking of 18 lowland rice genotypes based on mean grain yield and AMMI stability parameters 
Genotype Gm Rank IPCAg[1] Rank ASV Rank YSI Rank 

G1 4.908 10 -0.8423 15 1.4055 13 23 13 

G2 6.324 2 -0.6682 11 1.1225 10 12 6 
G3 4.559 16 1.2651 18 2.0328 18 34 18 
G4 4.971 8 0.2313 7 0.7897 8 16 7 
G5 5.093 6 0.0025 1 0.066 1 7 2 
G6 5.486 4 -0.3537 8 0.6895 7 11 4 
G7 5.489 3 -0.1404 4 0.3801 3 6 1 
G8 5.225 5 1.0129 17 1.6333 16 21 10 
G9 5.075 7 0.9132 16 1.6106 15 22 11 
G10 4.876 12 -0.7592 12 1.3629 12 24 14 
G11 4.826 13 0.1643 5 0.505 5 18 9 
G12 4.413 17 0.8270 14 1.4261 14 31 16 
G13 4.88 11 -0.4070 10 0.6658 6 17 8 
G14 4.948 9 0.0680 3 0.2265 2 11 5 
G15 4.691 14 -0.7972 13 1.3312 11 25 15 
G16 6.556 1 -0.3980 9 0.8051 9 10 3 
G17 4.213 18 -0.1738 6 0.4175 4 22 12 
G18 4.638 15 0.0555 2 1.6788 17 32 17 

Gm: genotype mean for grain yield, IPCAg[1]: the first multiplicative interaction principal component axis for genotypes, ASV: 
AMMI stability value and YSI: Yield stability index 
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AMMI biplot analysis 
 
Yield data from multi-environment trials (MET), are usually 
quite large, and it is difficult to grasp the general pattern of 
the data without some kind of graphical presentation (Yan, 
2000). The biplot technique as first reported by Gabriel 
(1971) provides a powerful solution to this problem. Biplot 
analysis is the most powerful interpretive tool for AMMI 
model (Mahalingam et al., 2006; Akter et al., 2014). B iplots 
are graphs where both genotypes and environments are 
plotted on the same axis so that the inter-relationships can be 
visualized. There are two basic AMMI biplots, the AMMI 1 
biplot where the main effects (genotype mean and 
environment mean) and IPCA1 scores for both genotypes and 
environments are plotted against each other, whereas in the 
second biplot (AMMI 2 biplot) scores for IPCA1 is plotted 
against scores of IPCA2.  
 
AMMI 1 biplot  
 
As illustrated in Figure 1, AMMI 1 biplot showed the main 
effects of eighteen rice genotypes and twelve environments 
(the x-coordinate) plotted against the interaction effects (the 
y-coordinate). In the biplot, genotypes that group together 
have similar adaptation while environments which group 
together influences the genotypes in the same manner (Gauch 
et al., 1996). Genotypes G2, G6, G7, G8, and G16 had above 
average yield and these genotypes adapted to favorable 
environments, while genotypes G1, G3, G10, G11, G12, G13, 
G15, and G17 adapted to poor environments with grain yields 
of below the average (Figure 1). Four genotypes G4, G5, G9, 
and G14 exhibited intermediate mean yield, relatively similar 
to the check variety (G18), but they varied in stability. Mean 
grain yield values of either genotypes or environments closer 
to the origin of the interaction effect axis (IPCA1) provide a 
smaller contribution to the interaction than those that are 
further away. This result demonstrated that genotypes G4, G5, 
G7, G11, G14, and G18 showed greater stability. However, their 
average grain yields were among the lowest, and, therefore, 
these genotypes could not be recommended. On the other 
hand, the genotypes G1, G3, G8, G9 and G10 were the most 
unstable, with averages close to the overall average (Figure 1). 
Among tested genotypes, G16 and G2 had the highest mean 
yield and it appears that G16 was more stable than G2.  
 
The genotypes G6 and G7 were also the next high yielding (> 
5.5 t ha-1) and both were relatively stable (Figure 1). Hence, 
genotype G2 was identified as specially adapted genotype 
while G6, G7 and G16 showed relatively wider adaptation 
across mentioned environments, with G16 being the leading 
in mean grain yield and stability. According to AMMI 1 biplot, 
twelve environments exhibited wider variation in main effects 
performance and in their patterns of interaction (IPCA1). 
Environments E8 and E9 were the most favorable while E1 
and E10 were least favorable environments. On the other 
hand, majority of the environments were intermediate in 
performance but different in their contribution to the overall 
interaction effect (Figure 1).   
 
With regard to the interaction, some of the environments 
showed close to zero IPCA1 score indicating their small 

contribution to the interaction effect (E1, E5, E9, E10 and E11) 
where all the genotypes performed well in these 
environments. Environments E2, E3, E6, and E12 exhibited an 
intermediate contribution to the overall interaction effect 
while a high contribution to the interaction effect was 
attributed to E4, E7, E8, and E12 (Figure 1). Bose et al. (2014), 
Akter et al. (2015), Shafiri et al. (2017), Lingaiah et al. (2020) 
and Huang et al. (2021) also reported similar pattern of 
interactions in different rice genotypes. 
 
AMMI 2 biplot 
 
The AMMI 2 biplot was produced using genotype and 
environmental scores of the first two interaction principal 
component axis (PC1 and PC2) to determine the interaction 
pattern of the 18 lowland rice genotypes tested in 12 
environments (Figure 2). AMMI 2 biplot clearly demonstrates 
“which- won-where” pattern and also reveals the sensitivity 
degree of genotypes to different environments (Li et al., 
2006). Purchase (1997) explained that the genotypes 
positioned close to the biplot origin are more stable and thus 
showed wider adaptation than those which are far from the 
center of the biplot.  
 

 
Figure 1. AMMI1 biplot of the first interaction principal 

component axis against main effects for 18 medium 
maturing lowland rice genotypes at 12 environments. E1: 
Woreta 2013, E2: Maitsebri 2013, E3: Woreta 2014, E4: Jimma 

2014, E5: Maitsebri 2014, E6: Pawe 2014, E7: Assosa 2014, 
E8: Woreta 2015, E9: Pawe 2015, E10: Maitseberi 2015, E11: 

Jimma 2015, E12: Assosa 2015. 
 
Moreover, the genotypes occurring close together on the 
biplot will tend to have similar yields in all environments, 
while genotypes far apart may either differ in mean yield or 
show a different pattern of response over the environments 
(Akter et al., 2014). In the present study, genotypes G5, G6, 
G13, G14, G16 and G17 were relatively close to the biplot 
origin and thus, they are more stable genotypes showing 
wider adaptation over the studied environments, whereas 
genotypes G2, G11, and G14 showed moderately stable 
performance. 
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Figure 2. AMMI2 biplot of the first and the second 
interaction principal component axes for 18 medium 
maturing lowland rice genotypes at 12 environments in 
grain yield. E1: Woreta 2013, E2: Maitsebri 2013, E3: Woreta 
2014, E4: Jimma 2014, E5: Maitsebri 2014, E6: Pawe 2014, E7: 
Assosa 2014, E8: Woreta 2015, E9: Pawe 2015, E10: 
Maitseberi 2015, E11: Jimma 2015, E12: Assosa 2015. On the 
other hand, genotypes G1, G4, G8, G9, G10, G12, G15, and G18 
were positioned away from the biplot origin indicating their 
higher interaction to the environments and hence, these 
genotypes exhibited narrow adaption (Figure 2). The check 
variety (G18) had a specific adaptation to environments E10 
and E11, whereas genotype G12 was adapted to environment 
E8; genotypes G3 and G8 to environment E3; genotypes G4, G9 
and G11 to environments E2 and E6; genotype G2 to 
environment E4; genotypes G1, G10 and G15 to environment 
E7. Other associations between genotypes and environments 
can be seen in Figure 2. Among environments, it appears that 
environments E1, E2, E3, E5 and E12 were the largest 
contributors to the phenotypic stability of tested rice 
genotypes as they were relatively close to the biplot origin. On 
the other hand, environments E4, E6, E7, E8, E9 and E11 
largely contributed to the overall G × E interaction, because 
they were positioned far from the biplot origin in AMMI 2 
graph (Figure 2). 
 
CONCLUSION 
 
Selecting high yielding and stable genotypes is a frequent 
challenge to breeders as grain yield is one of the quantitative 
traits most influenced by environmental factors. AMMI 
statistical model is a great tool to identify stable and high 
yielding rice genotypes for specific as well as for diverse 
environments. In the present study, analysis of variance for 
the AMMI model of grain yield indicated that genotypes, 
environments, GE interaction and AMMI components were 
significant. AMMI analysis revealed that the largest proportion 
of the total variation in grain yield was attributed to testing 
environments, followed by GE interaction. The mean grain 

yield of genotypes averaged over environments indicated that 
G16 had the highest mean yield of 6.56 t ha-1  and  G17 showed 
the lowest mean yield of 4.21 t ha-1. Genotype G2 ranked 
second in mean grain yield (6.32 t ha-1) but tended to be 
unstable. Genotypes G6 and G7 were the 3rd high yielding and 
more stable than G2 and G16. Theses high yielding genotypes 
were also resistant to leaf and panicle blast diseases. The 
genotypes G4, G5, G6, G7, G11, 14, G16 and G17 were not as 
such affected by the G x E interaction and thus would perform 
well across a wide range of environments. It is concluded that 
among genotypes tested, G2, G6 and G16 were the leading in 
mean grain yield with yield advantage of 36.2%, 18.3% and 
41.4% over the check, G18 (4.64 t ha-1), respectively. 
Therefore, G2, G6 and G16 were identified as candidate 
varieties and endorsed for verification for possible release. 
Subsequently, considering farmers’ feedback and evaluation 
by national variety release technical committee, G16 was 
recommended for cultivation by the name ‘Abay’ as improved 
lowland rice variety in areas of Northwest Ethiopia that 
require medium maturing lowland rice varieties. The other 
high yielding and diseases resistant genotypes G2, G5, G6, and 
G7 can be parental materials in rice breeding programs aiming 
for high yielding and other traits of interest. 
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