

Physio-biochemical and molecular perspectives of TRIA-mediated growth responses in plants

Sanjoy Shil

Bidhan Chandra Krishi Viswayidyalaya (Bankura Campus), Susunia, Chhatna, Bankura 722 132, West Bengal, India,

Received: 25 April 2021 Accepted: 14 September 2021 Published: 30 September 2021

> *Correspondence Dr. Sanjoy Shil sreejashil2010@gmail.com

Triacontanol (TRIA) is a pivotal endogenous plant growth regulator with effective metabolic activator found in plant epicuticular waxes and in beewaxes as the palmitate ester. It is a non-toxic, pollution-free, low-cost, high-efficiency, broadspectrum plant growth regulator. It was found after a series of experiment that TRIA plays a significant role in promoting the growth and yields of corn, rice, wheat, tomato, carrot, cucumber, lettuce, soybean, potato, peanuts, chilli pepper, cotton and ornamental plants like rose etc. TRIA causes rapid responses in enhancing growth of the crop and the growth in rice, tomato and maize about 20% is enhanced by this treatment. The response is very rapid, an increased growth within 10 minutes. It is very much insoluble in water and is applied as foliage on the leaf at a very low concentration i.e.0.01mg/litre. However, further investigations are necessary to elucidate the possible role of TRIA on plant growth regulation, physio-biochemical as well as molecular activities and secondary metabolite biosynthesis in plants subjected to various biotic and abiotic stresses. The present review covers the pivotal role of TRIA in plant growth regulation, their mode of action and significance in improving the plant productivity and quality of both agricultural as well horticultural crops.

Key words: Tricontanol (TRIA), growth regulation, yield, biochemical and molecular responses

INTRODUCTION

TRIA, a metabolite act as a secondary messenger, improves plant growth, as well as the yield and quality characteristics of various crops (Ries & Stutte, 1985), and it increases the rate of several biochemical and physiological processes (Ries & Houtz, 1983; Ries, 1991; Naeem et al., 2009, 2010). For example, triacontanol (TRIA) increases the contents of total chlorophyll (Chl), Chla and Chl b by 25.1, 26.1, and 22.4%, respectively, after 4 h compared with the contents of control rice seedlings (Chen et al., 2003). It is a totally nontoxic, plant growth bio-regulator without any residual effect (Samui & Roy, 2007). TRIA is active at very low concentration on the cell membranes and acts in combination with other long chain

alcohols to regulate the formation of TRIM, a putative secondary messenger(s) of TRIA and TRIM move rapidly throughout the plant resulting in dry matter increase (Ries & Wert, 1988). It produces stronger seedlings with better root system and finally developed into vigorous plants which produces better yield (Ahmed, 1990; De & Haquue, 1996). The most profound effects of TRIA are that it increases growth, biomass, and photosynthetic activity, as well as the free amino acid, reducing sugar, and soluble protein content (Muthuchelian et al., 1995). Furthermore, the foliar application of TRIA enhances crop production under conditions of abiotic stress, including water stress (Muthuchelian et al., 1997), salt stress (Perveen et al., 2013) and acidic mists (Muthuchelian et al., 2003).TRIA can increase

the activities of nitrate reductase, amylase, peroxidase enzyme (Li et al., 2007) and promote carbon-nitrogen metabolism and increase the carbon-nitrogen ratio and the storage and accumulation of ATP to increase production (Ries & Wert, 1977). Exogenous application of TRIA causes delay of senescence of many crops and improves freshness of the several vegetables and fruit crops.

Chemical properties of Tricontanol (TRIA)

TRIA is 30-C saturated long-chain primary fatty alcohol that is triacontane in which one of the terminal methyl hydrogen is replaced by a hydroxy group. It's general formula is $C_{30}H_{61}OH$ and molecular mass 438.81 g/mol, having density 0.777 g/ml at 95 °C and melting point is 87 °C (189 °F; 360 K). It was first

isolated from shoots of alfalfa (*Medicago sativa* L.) (Ries et al., 1977). The chemical name is triacontanol-1 or n-triacontanol, referred to as triacontanol (TA or TRIA). It is also known as benzyl alcohol or melissyl alcohol or myricyl alcohol.

Figure 1. Structural formula of Triacontanol (TRIA) [Source: https://en.wikipedia.org/wiki/1-Triacontanol. Last accessed on 19.09.2021

Function of TRIA in physiological growth regulation

Many researchers have been reported the TRIA-mediated growth responses in plant such as growth and yield

Table 1. Tricontanol (TRIA) mediated physiological growth responses in some crop species				
Name of the crop	Physiological growth responses	Reference		
Tomato	Plant height, number of leaves and branches, fresh and dry weights	Khan et al., 2009		
(Solanum lycopersicum L.)	of the plant.			
Coriander (Coriandrum	Shoot and root lengths, plant fresh and dry weights.	Idrees et al., 2010		
sativum L.)				
Sadabahar (Catharanthus	Number of leaves per plant, average leaf-area and fresh and dry	Naeem et al., 2019		
roseus L.)	weights of plants, Net photosynthetic rate and stomatal conductance.			
Coffee senna (Senna	Fresh and dry weights of the plant, transpiration rate,	Naeem et al., 2010		
occidentalis L.)	Photosynthetic rate (P N), stomatal conductance (gs).			
Opium poppy (Papaver somniferum L.)	Plant height, dry weight and number of branches.	Khan et al., 2007		
Rice (<i>Oryza sativa</i> L.)	Leaf area index, Crop growth rate.	<u>Pal et al., 2009</u>		
Rice (Machine-Transplanted)	Number of green leaves, stem diameter, dry weight.	Li <u>et al., 2016</u>		
Sweet basil (Ocimum	Shoot and root lengths, number of spikes per plant, total leaf area,	Hashmi et al., 2011		
basilicum L.)	plant fresh and dry weights.			
Hyacinth bean (Lablab	Plant fresh and dry weights, leaf-area per plant, number and dry	Naeem & Khan, 2005;		
purpureus L.)	weights of nodules, Photosynthetic rate (P N), stomatal conductance	Naeem et al., (2009)		
	(gs) and transpiration rate.			
Japanese mint (Mentha arvensis L.)	Plant height, leaf-area, leaf-yield, and plant fresh and dry weights.	Naeem et al., 2011		
Artemisia (Artemisia annua L.)	Shoot and root lengths, plant fresh and dry weights, transpiration rate.	Aftab et al., 2010		
Coriander (<i>Coriandrum</i> sativum L.)	Plant height at harvest, number of umbels per plant.	Parmar et. al., 2018		
Bougainvillea (<i>Bougainvillea</i>	Net photosynthetic rate, dry matter production and ethylene	Khandaker et al.,		
glabra var. Elizabeth Angus)	production rate, leaf area, shoot length, stomatal conductance.	2013		
Coriander (Coriandrum sativum L.)	Shoot fresh/dry weight.	<u>Karam et al., 2017</u>		
Cocoa (<i>Theobroma cacao</i> L.)	Plant length and the leaf size, leaf number and stem diameter.	Rama et al., 2014		
Mangrove (Rhizophora	Increased root and shoot growth, length of roots, height and	Moorthy &		
apiculata)	the biomass of the plant.	Kathiresan, 1993		
Strawberry (Fragaria × ananassa)	Number of flowers and buds, inflorescence length, fruit number, fruit development and fruit ripening-related growth and development.	Pang et al., 2020		
Green gram (<i>Vigna radiata</i> (L.) Wilczek)	Plant height, root and shoot length and their fresh mass.	<u>Kumaravelu et al.,</u> 2000		
Canola (<i>Brassica napus</i> L.)	Root-shoot fresh and dry weight, shoot length photosynthetic rate, transpiration rate, electron transport rate.	Shahbaz et al., 2013		
Wheat (<i>Triticum aestivum</i> L.)	Root and shoot dry weight, total leaf area, root and shoot length, total Membrane Permeability (%), Relative Water Potential (%), Osmotic potential, Turgor potential.	Perveen et al., 2013		
Okra (<i>Abelmoschus esculentus</i> L.)	Number of leaves per plant, number of internodesper plant, fresh and dry weight per plant.	Chowdhury, et al., 2014		

Table 2. Tricontanol (TRIA) mediated biochemical growth responses in some crop species

Name of the crop	Biochemical growth responses	References
Tomato	Total chlorophyll, and β-carotenoids content, free amino acids,	Khan et al., 2009
(Solanum lycopersicum L.)	reducing sugar and soluble protein, N, P, and K contents in the leaves,	
	lipid peroxidation and acting as an antioxidant compound.	
Coffee senna (Senna	Total chlorophyll and carotenoid content, nitrate reductase and	Naeem et al., 2010
occidentalis L.)	carbonic anhydrase activities, N, P, K and Ca content in leaf.	
Coriander (Coriandrum	Phenolic compounds and anthocyanin, carotenoid, ascorbate,	Karam et al., 2017
sativum L.)	dehydroascorbate (DHA) and GSH content, protein content,	
	Phenylalanine ammonia lyase enzyme (PAL) assay, Electrolyte	
	leakage, MDA (malondialdehyde), lipid peroxidation and H ₂ O ₂ assay.	
Bougainvillea (Bougainvillea	Leaf sugar content, soluble protein, TSS, and antioxidant activities,	Khandaker et al.,
glabra var. Elizabeth Angus)	mineral content (N, P, and K), Chlorophyll a, b and total chlorophyll,	2013
0 ,	sucrose phosphate synthase (SPS) activity.	
Japanese mint (Mentha	Total chlorophyll and carotenoid contents, activities of nitrate	Naeem et al., 2011
arvensis L.)	reductase and carbonic anhydrase, N, P, and K contents in leaf, total	
,	phenol.	
Hyacinth bean (Lablab	Total chlorophyll and carotenoid content, nitrate reductase and	Naeem & Khan,
purpureus L.)	carbonic anhydrase activities, N,P, K and Ca content in leaf, nodule-N	2005; Naeem et al.,
	and leghemoglobin contents.	<u>2009</u>
Artemisia (Artemisia annua L.)	Total chlorophyll and carotenoid content, nitrate reductaseand	Aftab et al., 2010
	carbonic anhydrase activities, N, P and K content in leaf	
Coriander (Coriandrum	Total chlorophyll and carotenoids content, nitrate reductaseand	Idrees et al., 2010
sativum L.)	carbonic anhydrase activities, N, P and K content in leaf	
Opium poppy (Papaver	Chl a, Chl b and total Chlorophyll.	Khan et al., 2007
somniferum L.)		
Sweet basil (Ocimum	Chl a, Chl b, total Chl, and carotenoid contents, activities of nitrate	Hashmi et al., 2011
basilicum L.)	reductase and carbonic anhydrase, N,P, and K contents in leaf.	
Rice (Machine-Transplanted)	Total chlorophyll content, activities of APX, CAT, POD, and GR, sucrose	<u>Li et al., 2016</u>
	content, ROS production and membrane damage.	
Sadabahar (Catharanthus	Total chlorophyll and total carotenoids contents, activities of nitrate	Naeem et al., 2019
roseus L.)	reductase, carbonic anhydrase and tryptophan decarboxylase.	
Rhizophora	Reduction of nitrate reductase as well as increase amount of	Moorthy &
apiculata (Mangrove)	chlorophylls in the photosystem I and II.	Kathiresan, 1993
Coriander (Coriamdrum	Hydrogen peroxide content and levels of lipid peroxidation in terms	Karam and
sativum L.)	of malondialdehyde content, antioxidant enzymes activities such as	Keramat, 2017
	superoxide dismutase, catalase, ascorbate peroxidaseand peroxidase.	. 1 0044
Ground nut (<i>Arachis hypogaea</i>	Total chlorophyll content, total soluble sugars, total soluble proteins	<u>Verma et al., 2011</u>
L.)	and ascorbate peroxidase, catalase, Peroxidase and polyphenol	
	oxidase activities, lipid peroxidation, Malondialdehyde (MDA)	
Charles and Charles	Chlorenty III a TCC ARA IAA Ethylana content mustain	Dame et al. 2020
Strawberry (Fragaria ×	Chlorophyll content, Vit c, TSS, ABA, IAA, Ethylene content, protein	<u>Pang et al., 2020</u>
ananassa)	content, fruit sugar content and anthocyanin content, flavonoid	
	synthesis, SOD (Superoxide dismutase), POD (Peroxidase), CAT (Catalase), PPO (Polyphenol oxidase), MDA (malondialdehyde) and	
	(Catalase), PPO (Polyphenol oxidase), MDA (malondialdehyde) and Proline content.	
Croon gram (Vigna radiata (I.)	Contents of chlorophylls, saccharides, starch, soluble proteins, amino	Kumaravelu et al.
Green gram (<i>Vigna radiata</i> (L.) Wilczek)	acid and total phenols, leaf nitrate content, and <i>nitrate reductase</i>	2000
wiiczekj	activity.	<u> 4000</u>
Canola (Brassica napus L.)	Ratio of chlorophyll a/b, free proline and glycine betaine contents,	Shahbaz et al., 2013
Ganoia (<i>Di ασσίοα παρά</i> σ Ε.)	shoot and root K contents.	SHAHDAL CLAI, 4013
	SHOOL AND TOOL IS CONCEINS.	
Wheat (Triticum aestivum L.)	Total phenolics, amino acids, leaf free prolineand glycinebetaine	Perveen et al., 2013
(17 toleam descrivam II.)	content.	<u> </u>

improvement, photosynthetic activities, transpiration, stomatal conductance, water uptake as well as mineral nutrient acquisition, nitrogen-fixation etc., in various

agricultural and horticultural crops. It has been reported that exogenous application of TRIA when applied initially, it moves rapidly in plants and directly or indirectly regulates several

Table 3. Tricontanol (TRIA) mediated yield and quality attributing growth responses in some crop species Name of the crop Yield attributing growth responses **Quality attributing growth** References responses Idrees et al., Coriander Number umbels per plant, Fruits per Essential oil content (Coriandrum umbel. 2010 sativum L.) Tomato Number of fruits per plant, weight per Fruit ascorbic acid and lycopene Khan et al., 2009 (Solanum fruit and fruit yield per plant. contents. lycopersicum L.) Bougainvillea Blooming rate, floral buds formation Flower longevity and quality of Khandaker et al., (Bougainvillea glabra and bract growth, number of flowers, phytochemical levels (Phenol, 2013 carotenoids, Flavonoid), flowers fresh var. Elizabeth Angus) flowers/branch. weight and leaf drop. Japanese mint Herbage yield, essential oil yield. Essential oil content, menthol, L-Naeem et al., 2011 (Mentha arvensis L.) menthone. isomenthone. and menthylaceteate contents. Hyacinth bean Number of pods per plant, number of Naeem & Khan, Seed-protein content, total seeds per pod, 100-seed weight and (Lablab purpureus L.) carbohydrate content, and tyrosinase 2005; Naeem et al., 2009 seed-yield per plant. activity. Number of capsules, seed yield per Khan et al., 2007 Opium poppy Morphine content and morphine yield plant, and crude opium yield per plant. (Papaver per plant. somniferum L.) Coffee senna (Senna Number of pods per plant, number of Total anthraquinone and sennoside Naeem et al., seeds per pod, 100-seed weight and occidentalis L.) contents and seed-protein content. 2010 seed yield per plant. Sweet basil (Ocimum Essential oil yield. Leaf-protein and carbohydrate Hashmi et al., contents, essential oil content, linalool, basilicum L.) 2011 methyl eugenol, and eugenol contents. Coriander Seed yield, stover yield. Parmar et al., (Coriandrum sativum 2018 Rice (Oryza sativa L.) Panicle length, harvest index, number Pal et al., 2009 of filled grain/panicle, Straw yield, test weight. Artemisinin yield. Artemisia (Artemisia Essential content, artemisinin Aftab et al., 2010 annua L.) content. Rice (Machine-Number of tillers, grain filling and Xiaochun et al., Transplanted) grain yield per hill at maturity. 2016 Sadabahar Leaf yield and herbage yield. Essential oil content. Naeem et al., (Catharanthus roseus 2019 L.) Early flowering, pod production and Green gram (Vigna Kumaravelu et retention, number of pods and seeds radiata (L.) Wilczek) al., 2000 per plant, seed and pod weight and seed yield. Canola (Brassica Number of seeds per plant, Shahbaz et al., Yield per plant, 100-Seed weight, napus L.) 2013 number of seeds/plant. Wheat (Triticum 100-Seed weight, number of grain per Perveen et al., aestivum L.) plant, number of fertile tillers per 2013 plant, grain yield per plant. Number of branches per plant, No. of Dhall & Ahuja, Tomato (Lycopersicon esculentum MIill.) fruits per plant, Average fruit weight, 2004 Fruit diameter, early yield per plant Total yield per plant. Okra (Abelmoschus Days required for 50% flowering, Chowdhury et flower buds per plant, number of pods al., 2014 esculentus L.) per plant, pod length (cm), pod diameter (cm), yield (t/h).

physiological processes in plants. TRIA also play a significant role in plant metabolism like photosynthetic activities, increases growth of root, shoot and flower production.

Several enzymes relating to carbohydrate metabolism increase in activity following TRIA treatment and better plant response have been occurred when foliar applications at

warm temperatures. TRIA-mediated increase in dry matter accumulation in plants could persuade the inter-relationship between primary and secondary metabolism that leads to augment the biosynthesis of secondary metabolites having diverse biological functioning. Furthermore, TRIA contributes a significant role in ameliorating the stress-accrued alterations by both biotic as well as abiotic in plants via modulating the activation of the stress tolerance mechanisms. TRIA efficiently reduces the negative effects of salinity stress. and improves the photosynthetic rate, the transpiration rate. and the chlorophyll contents (Perveen et al., 2013). Chen et al., 2003 reported that TRIA affected the photosynthesis by increasing the level and activity of ribulose-1, 5-bisphosphate carboxylase oxygenase (RuBisCO) and by improving the status of photosystems. Ries & Houtz, 1983 suggested for the first time that the growth stimulating effects of TRIA might be due to certain alterations at the cell membrane level and net photosynthesis was stimulated to a greater extent in isolated protoplast preparations, supporting the suggestion that the putative initial site of TRIA action could be localized at the level of plasma membranes. Some of the possible TRIAmediated physiological growth responses in various plant species are briefly discussed in Table 1.

Function of TRIA in biochemical growth regulation

It has also been suggested that TRIA increased free amino acids, reducing sugars, and soluble protein of rice (Oryza sativa L.) and maize (Zea mays L.) within 5 minutes. Exogenous application of TRIA promotes the protein synthesis and enzymes activities (peroxidase, nitrate reductase, carbonic anhydrase) and alters the contents of free amino acids, reducing sugars, soluble protein and active constituents of essential oil. There are strong evidences established from various experiments that exogenous application of TRIA mediated several physio-biochemical attributes especially oxidative stress, antioxidant systems, compatible solutes and its mode of action in plants under salinity conditions. Foliar application of TRIA, at a concentration of 0.5 mg dm³, significantly promoted the contents of saccharides, starch, soluble proteins, amino acids, and phenols in green gram (Kumaravelu et al., 2000). TRIA application also improved the contents of soluble protein, starch, sugars, and free amino acids in the leaves of Oryza sativa and Zea mays (Kim et al., 1989). Some of the possible

TRIA-mediated biochemical growth responses in various plant species are briefly discussed in Table 2. Since MaYMV is a newly emerged disease, despite its potential impact, much is not known about its epidemiology and control measures. Adequate field and laboratory research-based information will be required including more assessments of alternative hosts that the virus overwintering, insect vectors that transmitting the virus from plant to plant and associated factors that contribute to MaYMV disease epidemics including cropping system, cultural practices and environmental condition. Plant virus diseases including MaYMV are intrinsically difficult to manage directly by use of chemical pesticides; however, integrated management methods which include cultural practices such as removal of infection sources, field sanitation, removal of alternative hosts, use of healthy seed (virus-free seeds); chemical pesticides to control insect vectors indirectly through seed treatment and foliar spray are the most possible management measures of plant viral diseases. For such an approach to succeed, the epidemiology and associated factors influencing the geographical spread of the disease should have to be studied.

Function of TRIA in yield and quality attributing traits regulation

Average yield and quality attributing traits are enhanced by TRIA application at a very low concentration in several vegetable crops (tomato, eggplant, cabbage, chilli, cucumber, potato and bean etc) have already been reported. TRIA can promote the plant growth in both laboratories as well as in greenhouse conditions; however, results obtained in the field study were not encouraging (Ries & Houtz, 1983). TRIAmediated improvement in grain weight, test weight as well as harvest index and ultimately quality of some cereal crops like wheat, rice etc. Foliar spray of 0.5 mg dm³ of TRIA significantly promoted the onset of flowering and increased the pod production pod number, seed number, mass per plant, and mass per pod in green gram plants exposed to TRIA at 0.5 mg dm3 (Kumaravelu et al., 2000). Eriksen et al., 1982 noticed a significant increase in total as well as per plant yield of tomato, when TRIA was applied as foliar sprays; but when TRIA was added to the growth medium, only a temporary increase in yield and number of fruits was observed. Idrees et al., 2010 were recorded the highest values regarding the number of umbels, fruits per umbel, 100 seed weight, and

Table 4. Tricontanol (TRIA) mediated molecular responses in some crop species

Tuble 1: 11 teoritanos (1 km) mediatea molecular responses in some erop species				
Name of the crop	Molecular growth responses	References		
Variety of plant species like rice,	Increases cell number and growth in vitro culture, increase	Hangarter <u>et al.,</u>		
wheat, corn, maize, cucumber etc.	protein formation and rapid cell division.	<u>1978</u>		
Coffea arabica L. and Coffea	Induced embryo formation (somatic embryogenesis) from in	Ciridhar et al.,		
canephora P. ex Fr.	vitro stem segment callus tissues along with multiplication of	<u>2004</u>		
	primary embryos into secondary embryos.			
Groundnut (Arachis hypogaea L.)	In vitro shoot multiplication potentiality (multiple shoots,	<u>Verma et al.,</u>		
	auxiliary branches and shoot buds) per explants as well as in	<u>2011</u>		
	vitro shoot establishment.			
Strawberry (Fragaria × ananassa)	Transcriptome analysis, differentially expressed genes (DEGs)	Pang et al., 2020		
	genes of up- and down-regulating enzyme related to fruit			
	softening and coloring and Relative gene expression, DNA			
	metabolic processes.			
Tufted bamboo (Dendrocalamus	<i>In vitro</i> shoot multiplication rate, adventitious rhizogenesis (%).	<u>Mishra et al.,</u>		
strictus)		<u>2001</u>		

seed yield, when the TRIA was applied together with GA3 to coriander crop. Some of the possible TRIA-mediated yield and quality attributing growth responses in various plant species are briefly discussed in Table 3.

Function of TRIA in molecular growth regulation

TRIA exploits the molecular potentiality of the crop to a large extent by enhancing the physio-biochemical efficiency of the plant cells.TRIA enhances the elongation of multiple shoots and micro-propagated plantlets in ornamentals, herbaceous and other woody plants. Hangarter et al., 1978 demonstrated the favorable effect of TRIA in an in vitro study on Nicotiana tabacum, L. esculentum, Solanum tuberosum, Phaseolus vulgaris, and a barley hybrid (Hordeum vulgarex H. jubatum). TRIA has a positive effect on in vitro shoot multiplication, biosynthesis of secondary metabolites. Isolation and characterization of TRIA-regulated genes was the first step toward understanding the TRIA action, since it gave clues to the biochemical pathways and physiological processes that regulate, and reveal the components involved in TRIA signaling (Chen et al., 2002). Chen et al., 2002 reported that higher rbcS gene levels were associated with improved photosynthetic activity in TRIA-treated plants. Recently, compiled microarray data bases provide information about the expression profile of any gene that focuses on hormonerelated gene expression. Microarray data suggest that almost all hormone-responsive signal transduction pathways appear to interact with each other during growth and development. Some of the possible TRIA-mediated molecular growth responses in various plant species are briefly discussed in Table 4.

CONCLUSION

Foliar and soil application of triacontanol is very effective in improving plant response to various physio-biochemical, yield and quality attributing and molecular growth regulation. A conclusion may be drawn from the overall discussion of the above review that exogenous traicontanol application at nanomolar concentrations, improves the growth and productivity of many crops of agricultural, horticultural and medicinal and aromatic plants, woody plants and trees etc. TRIA modulates the enhancement of dry matter leads to increase in secondary metabolites including essential oils, crude substances etc and active photochemical of medicinal and aromatic plants. However, further studies are required to elucidate the possible role of triacontanol on the upregulation of plant growth and development at physiological, biochemical and molecular level. Further understanding of molecular mechanisms of growth regulator biosynthesis, perception and response has to be improved considerably. Integrated approaches for future investigations to be undertaken for successful implementation of TRIA in plant growth regulation.

REFERENCES

Aftab, T., Khan, M.M.A., Idrees, M., Naeem, M., Singh, M., & Ram, M. (2010). Stimulation of crop productivity, photosynthesis and artemisinin production in *Artemisia annua* L. by

triacontanol and gibberellic acid application. *J Plant Interact*, 5, 273–281.

Ahmed, J. (1990). Effect of growth regulator on rice seedling growth. *Int. Rice Res., Newsletter*, 15, 23.

Chen, X. P., Yuan, H. Y., Chen, R. Z., Zhu, L. L., & He, G. C. (2003). Biochemical and photochemical changes in response to triacontanol in rice (*Oryza sativa* L.). *Plant Growth Regul.*, 40, 249–256.

Chen, X., Yuan, H., Chen, R., Zhu, L., Du, B., Weng, Q., & He, G. (2002). Isolation and characterization of triacontanol regulated genes in rice (*Oryza sativa* L.): Possible role of triacontanol as a plant growth stimulator. *Plant Cell Physiol.*, 43, 869-876.

Chowdhury, R., Warnakula, S., Kunutsor, S., Crowe, F., Ward, H. A., Johnson, L., ... & Di Angelantonio, E. (2014). Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis. *Annals of internal medicine*, *160*(6), 398-406.

Ciridhar, P., Indu, E. P., Ravishankar, G. A., & Chandrasekar, A. (2004). Influence of triacontanol on somatic embryogenesis in Coffea arabica L. and Coffea canephora P. ex Fr. In Vitro Cellular & Developmental Biology-Plant, 40(2), 200-203. https://doi.org/10.1079/IVP2003519.

De, G. C., & Haque, F. (1996). Efficiency of triacontanol granules on transplanted kharif 'IR50'rice (*Oryza sativa*), *Indian J. Agron.*, 41, 492-94.

Dhall, R. K., & Ahuja, S. (2004). Effect of Triacontanol (Vipur) on yield and yield Attributing Characters of Tomato (*Lycopersicon esculentum* MIill.). *Environment & Ecolology*, 22 (Spl - l), 64 – 66.

Eriksen, J. O., Smith, K. M., & Jones, R. L. (1982). Transmission of plant viruses by insect vectors. *Phytopathology*, *72*(8), 917–918.

Hangarter, R., Ries, S.K., & Carlson, P. (1978). Effect of triacontanol on plant cell cultures in vitro. *Plant Physiol.*, 61, 855-857.

Hashmi, N., Khan, M. M. A., Naeem, M., Idrees, M., Aftab, T., & Moinuddin, T. (2010). Ameliorative effect of triacontanol on the growth, photosynthetic pigments, enzyme activities and active constituents of essential oil of Ocimum basilicum L. Medicinal and Aromatic Plant Science and Biotechnology, 5(1), 20-24.

Idrees, M., Khan, M.M.A., Aftab, T., & Naeem, M. (2010). Synergistic effects of gibberellic acid and triacontanol on growth, physiology, enzyme activities and essential oil content of *Coriandrum sativum L. The Asian Australasian J Plant Sci Biotechnol.*, 4, 24–29.

Karam, A. E., & Keramat, B. (2017). Foliar spray of triacontanol improves growth by alleviating oxidative damage in coriander under salinity. *Ind J Plant Physiol.*, 22, 120–124. Retrieved from https://doi.org/10.1007/s40502-017-0286-z.

Karam, E.A., Keramat, B., Asrar, Z., & Mozafari, H. (2017). Study of interaction effect between triacontanol and nitric oxide on alleviating of oxidative stress arsenic toxicity in coriander seedlings. *Journal of Plant Interactions*, 12(1), 14-20. DOI: 10.1080/17429145.2016.1267270.

Khan, R., Khan, M.M.A., Singh, M., Nasir, S., Naeem, M., Siddiqui, M.H., & Mohammad, F. (2007). Gibberellic acid and triacontanol can ameliorate the optimum yield and morphine production in opium poppy (Papaver somniferum L.). *Acta Agric Scand Section B: Soil Plant Sci.*, 5, 307–312.

Khan, M.M.A., Bhardwaj, G., Naeem, M., Moinuddin, Mohamma d, F., Singh, M., Nasir, S., & Idrees, M. (2009). Response of tomato (*Lycopersicon esculentum* Mill.) to application of potassium and triacontanol. *Acta Hort (ISHS)*, 823, 199 – 208.

Khandaker, M. M., Faruq, G., Rahman, M. M., Sofian-Azirun, M., & Boyce, A. N. (2013). The influence of 1 - triacontanol on the growth, flowering, and quality of potted Bougainvillea plants (Bougainvillea glabra var. "Elizabeth Angus") under natural conditions. The Scientific World Journal, 2013(1), 308651. http://dx.doi.org/10.1155/2013/308651.

Kim, Z.H., Lim, E.M., Liven, Z., & Popova, L.P. (1989). Effects of triacontanol on certain parameters of photosynthesis and nitrogen assimilation in rice and maize. *Biol Physiol.*, 3, 91-93.

Kumaravelu, G., Livingstone, V. D., & Ramanujam, M. P. (2000). Triacontanol-Induced Changes in the Growth, Photosynthetic Pigments, Cell Metabolites, Flowering and Yield of Green Gram. *Biologia Plantarum*, 43(2), 287-290.

Li, W.H., Zhang S.J., & Hou L.X. (2007). Effect of plant growth regulators on reducing pods poorness in summer soybean. *Chin. Agric. Sci. Bull.*, 23, 349–352.

Li, X., Zhong, Q., Li, Y., Li, G., Ding, Y., Wang, S., ... & Chen, L. (2016). Triacontanol reduces transplanting shock in machine-transplanted rice by improving the growth and antioxidant systems. *Frontiers in plant science*, *7*, 872.

Mishra, Y., Rana, P.K., Shirin, F., & Ansari, S. A. (2001). Augmenting *in vitro* shoot multiplication by Vipul (Tricontanol) and adventitious rhizogenesis by rice bran extract in *Dendrocalamus strictus*. *Indian J. of Exp. Biology.*, 39, 165-169.

Moorthy, P., & Kathiresan, K. (1993). Physiological responses of mangrove seedling to triacontanol. *Biol Plant*, 35, 577.

Muthuchelian, K., Meenakshi, V., & Nedunchezhian, N. (2003). Protective effect of triacontanol against acidic mists in *Samanea saman* (Jacq.) Merrill seedlings: differential

responses in growth, $14CO_2$ fixation, ribulose-1,5-bisphosphate carboxylase, and electron transport activities. *Photosynthetica*, 41, 335–341.

Muthuchelian, K., Murugan, C., Harigovindan, R., Nedunchezhian, N., & Kulandaivelu, G. (1995). Effect of triacontanol in flooded *Erythrina variegata* seedlings. 1. Changes in growth, photosynthetic pigments and biomass productivity. *Photosynthetica*, 31, 269–275.

Muthuchelian, K., Murugan, C., Nedunchezhian, N., & Kulandaivelu, G. (1997). Photosynthesis and growth of *Erythrina variegata* as affected by water stress and triacontanol. *Photosynthetica*, 33, 241–248.

Naeem, M., Ansari, A. A., Aftab, T., Shabbirm A., Alam, M. M., Masroor, M., & Khan, MoinUddin, A. (2019). Application of triacontanol modulates plant growth and physiological activities of *Catharanthus roseus* (L.). *International Journal of Botany Studies*, 4 (2), 131-135.

Naeem, M., & Khan, M.N. (2005). Effect of foliar spray of triacontanol on growth performance of hyacinth bean. *Bionotes.*, 7, 62.

Naeem, M., Idrees, M., Aftab, T., Khan M.M.A., Moinuddin. (2010). Changes in photosynthesis, enzyme activities and production of anthraquinone and sennoside content of coffee senna (*Senna occidentalis* L.) by triacontanol. *Internat J Plant Develop Biol.*, 4, 53 – 59.

Naeem, M., Khan M.M.A., Moinuddin, Idrees, M., & Aftab T. (2011). Triacontanol-mediated regulation of growth and other physiological attributes, active constituents and yield of *Mentha arvensis L. Plant Growth Regul*, 65, 195 – 206.

Naeem, M., Khan, M.M.A., Moinuddin, & Siddiqui, M.H. (2009). Triacontanol stimulates nitrogen-fixation, enzyme activities, photosynthesis, crop productivity and quality of hyacinth bean (*Lablab purpureus* L.). *Sci Hort.*, 121, 389 – 396.

Pal, D., Mallick, S., Ghosh, R. K., Pal, P., Tzudir, L., & Barui K. (2009). Efficacy of Triacontanol on the growth and yield of rice crop in inceptisol of West Bengal. *Journal of Crop and Weed*, 5(2), 128-130.

Pang, Q., Chen, X., Lv J., Li T., Fang J., & Jia, H. (2020). Triacontanol Promotes the Fruit Development and Retards Fruit Senescence in Strawberry: A Transcriptome Analysis. *Plants*, 9, 488. Retrieved from https://doi.org/10.3390/plants9040488.

Parmar, V.K., Vekariya, P.D., Der, Y.A., and Thummar, V.M. (2018). Effect of plant growth regulators on growth and yield of coriander (*Coriandrum sativum L.*). *International Journal of Chemical Studies*, 6(6), 2869-2870.

- Perveen, S., Shahbaz, M., & Ashraf, M. (2013). Influence of foliar-applied triacontanol on growth, gas exchange characteristics, and chlorophyll fluorescence at different growth stages in wheat under saline conditions. *Photosynthetica*, 51, 541–551.
- Rama, R. Sitijak, & Dingse, Pandiangan. (2014). The Effect of plant growth regulator Triacontanol to the growth of Cacao seedlings (*Theobroma cacao* L.).
- Ries, S. (1991). Triacontanol and its second messenger 9-b-L(+)-adenosine as plant growth substances. *Plant Physiol.*, 95, 986–989.
- Ries, S. K., & Houtz, R. (1983). Triacontanol as a plant growth regulator. *Hort Science*, 18, 654–662.
- Ries, S. K., & Stutte, C. A. (1985). Regulation of plant growth with triacontanol. Critical Reviews in Plant Sciences, 2(3), 239-285.
- Ries, S. K., & Wert, V. (1977). Growth responses of rice seedlings to triacontanol in light and dark. *Planta*, 135(1), 77-82.
- Ries, S. K., Wert, V., Sweeley, C. C., & Leavitt, R. A. (1977). "Triacontanol: a new naturally occurring plant growth regulator. *Science*, 195 (4284), 1339–1341.
- Ries, S.K., & Wert, V.F. (1988).Rapid elicitation of second messenger by nanomolar doses of triacontanol and octacosanol. *Planta*, 173, 79-87.
- Samui, R. C., & Roy, A. (2007). Effect of growth regulators on growth, yield and natural enemies of potato. *J. Crop Weed*, 3, 35-36.
- Shahbaz, M., Noreen, N., & Perveen, S. (2013). Triacontanol modulates photosynthesis and osmoprotectants in canola (*Brassica napus* L.) under saline stress. *Journal of Plant Interactions*, 8 (4), 350-359.
- Verma, A., Malik, C. P., Gupta, V. K., & Bajaj, B. K. (2011). Effects of in vitro triacontanol on growth, antioxidant enzymes, and photosynthetic characteristics in *Arachis hypogaea L. Braz. J. Plant Physiol.*, 23(4), 271-277.