Maize (Zea mays L.), a fundamental global staple, faces increasing threats to productivity due to two major abiotic stresses: drought and salt stress. This review synthesizes current research on the stresses on maize, elucidates the underlying resistance mechanisms, and explores management strategies to enhance stress resilience. The review first delineates the damaging effects of drought and salt stress on the growth of maize, development, and its yield. By consolidating information from diverse research areas, this review offers a comprehensive overview of drought and salt stress resistance in maize. The insights provided are valuable for researchers, breeders, and policymakers working towards sustainable maize production in the face of increasing environmental challenges. A holistic understanding of the intricate interplay between drought, salt stress, resistance mechanisms, and effective management strategies is essential for developing resilient maize varieties and ensuring global food security in a changing climate.
climate change, productivity, resistance mechanisms, signal transduction, epigenetic modification, maize
Ahuja, I., de Vos, R. C., Bones, A. M., & Hall, R. D. (2010). Plant molecular stress responses face climate change. Trends in plant science, 15(12), 664-674.
Akram, M., Ashraf, M. Y., Ahmad, R., Rafiq, M., Ahmad, I., & Iqbal, J. (2010). Allometry and yield components of maize (Zea mays L.) hybrids to various potassium levels under saline conditions. Archives of Biological Sciences, 62(4), 1053-1061. Doi: 10.2298/ABS1004053A
Anjum, F., Yaseen, M., Rasul, E., Wahid, A., & Anjum, S. (2003). Water stress in barley (Hordeum vulgare L.). II. Effect on chemical composition and chlorophyll contents. Pak. J. Agric. Sci, 40(1-2), 45-49.
Ashraf, M., & Foolad, M. R. (2005). Pre‐sowing seed treatment—A shotgun approach to improve germination, plant growth, and crop yield under saline and non‐saline conditions. Advances in agronomy, 88, 223-271. Doi: 10.1016/ S0065-2113(05)88006-X
Bänzinger, M. (2000). Breeding for drought and nitrogen stress tolerance in maize: from theory to practice. Cimmyt.
Basu, S., Ramegowda, V., Kumar, A., & Pereira, A. (2016). Plant adaptation to drought stress. F1000Research, 5.
Bhatt, R., Kukal, S. S., Busari, M. A., Arora, S., & Yadav, M. (2016). Sustainability issues on rice–wheat cropping system. International Soil and Water Conservation Research, 4(1), 64-74.
Challinor, A. J., Simelton, E. S., Fraser, E. D., Hemming, D., & Collins, M. (2010). Increased crop failure due to climate change: assessing adaptation options using models and socio-economic data for wheat in China. Environmental Research Letters, 5(3), 034012.
Choudhary, M., Singh, A., Gupta, M., & Rakshit, S. (2020). Enabling technologies for utilization of maize as a bioenergy feedstock. Biofuels, Bioprod. Bioref. 14, 402–416. doi: 10.1002/bbb.2060
Cosgrove, D. J. (2000). Loosening of plant cell walls by expansins. Nature, 407(6802), 321-326. Doi: 10.1038/35030000
Davenport, R., James, R. A., Zakrisson-Plogander, A., Tester, M., & Munns, R. (2005). Control of sodium transport in durum wheat. Plant physiology, 137(3), 807-818. Doi: 10.1104/pp. 104.057307
Eker, S., Cömertpay, G., Konuşkan, Ö., Ülger, A. C., Öztürk, L., & Çakmak, İ. (2006). Effect of salinity stress on dry matter production and ion accumulation in hybrid maize varieties. Turkish journal of agriculture and forestry, 30(5), 365-373.
El-Bassiouny, H. M. S., & Bekheta, M. A. (2005). Role of putrescine on growth, regulation of stomatal aperture, ionic contents and yield by two wheat cultivars under salinity stress.
Ezin, V., Tosse, A. G. C., Chabi, I. B., & Ahanchede, A. (2021). Adaptation of cowpea (Vigna unguiculata (L.) Walp.) to water deficit during vegetative and reproductive phases using physiological and agronomic characters. International Journal of Agronomy, 2021(1), 9665312.
Fageria, N. K., Baligar, V. C., & Li, Y. C. (2008). The role of nutrient efficient plants in improving crop yields in the twenty first century. Journal of plant nutrition, 31(6), 1121-1157.
Farooq, M., Wahid, A., Kobayashi, N. S. M. A., Fujita, D. B. S. M. A., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Sustainable agriculture, 153-188.
Farooqi, M. Q. U., Nawaz, G., Wani, S. H., Choudhary, J. R., Rana, M., Sah, R. P., ... & Siddique, K. H. (2022). Recent developments in multi-omics and breeding strategies for abiotic stress tolerance in maize (Zea mays L.). Frontiers in Plant Science, 13, 965878.
Farsiani, A., & Ghobadi, M. E. (2009). Effects of PEG and NaCl stress on two cultivars of corn (Zea mays L.) at germination and early seedling stages. International Journal of Agricultural and Biosystems Engineering, 3(9), 442-445.
Flowers, T. J., & Flowers, S. A. (2005). Why does salinity pose such a difficult problem for plant breeders?. Agricultural water management, 78(1-2), 15-24. Doi: 10. 1016/j.agwat.2005.04.015
Gonzalez Guzman, M., Cellini, F., Fotopoulos, V., Balestrini, R., & Arbona, V. (2022). New approaches to improve crop tolerance to biotic and abiotic stresses. Physiologia plantarum, 174(1), e13547.
Gunes, A., Inal, A., Alpaslam, M., Erslan, F., Bagsi, E.G., Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164,728–736. Doi: 10.1016/j.jplph.2005.12.009
Hager, A. (2003). Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. Journal of plant research, 116, 483-505. Doi: 10.1007/s10265-003-0110-x
Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual review of plant biology, 51(1), 463-499. doi: 1040-2519/00/0601-0463
Hichem, H., & Mounir, D. (2009). Differential responses of two maize (Zea mays L.) varieties to salt stress: changes on polyphenols composition of foliage and oxidative damages. Industrial crops and Products, 30(1), 144-151. doi:10.1016/j.indcrop.2009.03.003
Hossain, A., Skalicky, M., Brestic, M., Maitra, S., Ashraful Alam, M., Syed, M. A., ... & Islam, T. (2021). Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy, 11(2), 241.
Iqbal, M. M., Goheer, M. A., & Khan, A. M. (2009). Climate-change aspersions on food security of Pakistan. Science Vision, 15(1), 15-23.
Jafar, M. Z., Farooq, M., Cheema, M. A., Afzal, I., Basra, S. M. A., Wahid, M. A., ... & Shahid, M. (2012). Improving the performance of wheat by seed priming under saline conditions. Journal of Agronomy and Crop Science, 198(1), 38-45. doi: 10.1111/j.1439-037x.2011.00487.x
Janmohammadi, M., Dezfuli, P. M., & Sharifzadeh, F. (2008). Seed invigoration techniques to improve germination and early growth of inbred line of maize under salinity and drought stress. Gen Appl Plant Physiol, 34(3-4), 215-226.
Kaya, C., Tuna, A. L., & Okant, A. M. (2010). Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turkish Journal of Agriculture and Forestry, 34(6), 529-538. doi: 10.3906/tar-0906-173
Khajeh-Hosseini, M., Powell, A. A., & Bingham, I. J. (2003). The interaction between salinity stress and seed vigour during germination of soyabean seeds. Seed Science and technology, 31(3), 715-725.
Kooyers, N. J. (2015). The evolution of drought escape and avoidance in natural herbaceous populations. Plant science, 234, 155-162.
Lawson, T., Oxborough, K., Morison, J. I., & Baker, N. R. (2003). The responses of guard and mesophyll cell photosynthesis to CO2, O2, light, and water stress in a range of species are similar. Journal of experimental botany, 54(388), 1743-1752.
Li, B., Li, N., Duan, X., Wei, A., Yang, A., & Zhang, J. (2010). Generation of marker-free transgenic maize with improved salt tolerance using the FLP/FRT recombination system. Journal of Biotechnology, 145(2), 206-213. doi:10.1016/j.jbiotec.2009.11.010
Lobell, D. B., & Field, C. B. (2007). Global scale climate–crop yield relationships and the impacts of recent warming. Environmental research letters, 2(1), 014002.
Malenica, N., Dunić, J. A., Vukadinović, L., Cesar, V., & Šimić, D. (2021). Genetic approaches to enhance multiple stress tolerance in maize. Genes, 12(11), 1760.
Mao, H., Wang, H., Liu, S., Li, Z., Yang, X., Yan, J., ... & Qin, F. (2015). A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nature communications, 6(1), 8326.
Menezes-Benavente, L., Kernodle, S. P., Margis-Pinheiro, M., & Scandalios, J. G. (2004). Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings. Redox report, 9(1), 29-36. doi: 10.1179/135100004225003888
Meng QingFeng, M. Q., Chen XinPing, C. X., Lobell, D. B., Cui ZhenLing, C. Z., Zhang Yi, Z. Y., Yang HaiShun, Y. H., & Zhang FuSuo, Z. F. (2017). Growing sensitivity of maize to water scarcity under climate change.
Miao ZhenYan, M. Z., Han ZhaoXue, H. Z., Zhang Ting, Z. T., Chen SiYuan, C. S., & Ma Chuang, M. C. (2019). A systems approach to a spatio-temporal understanding of the drought stress response in maize.
Miao ZhenYan, M. Z., Han ZhaoXue, H. Z., Zhang Ting, Z. T., Chen SiYuan, C. S., & Ma Chuang, M. C. (2019). A systems approach to a spatio-temporal understanding of the drought stress response in maize.
Moriondo, M., Giannakopoulos, C., & Bindi, M. (2011). Climate change impact assessment: the role of climate extremes in crop yield simulation. Climatic change, 104(3-4), 679-701.
Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., & Foley, J. A. (2012). Closing yield gaps through nutrient and water management. Nature, 490(7419), 254-257.
Osmolovskaya, N., Shumilina, J., Kim, A., Didio, A., Grishina, T., Bilova, T., ... & Wessjohann, L. A. (2018). Methodology of drought stress research: Experimental setup and physiological characterization. International journal of molecular sciences, 19(12), 4089.
Pitann, B., Zörb, C., & Mühling, K. H. (2009). Comparative proteome analysis of maize (Zea mays L.) expansins under salinity. Journal of Plant Nutrition and Soil Science, 172(1), 75-77. doi:10.1002/jpln.200800265
Qu, C., Liu, C., Gong, X., Li, C., Hong, M., Wang, L., & Hong, F. (2012). Impairment of maize seedling photosynthesis caused by a combination of potassium deficiency and salt stress. Environmental and experimental botany, 75, 134-141. doi:10.1016/j.envexpbot.2011.08.019
Quintero, J. M., Fournier, J. M., & Benlloch, M. (2007). Na+ accumulation in shoot is related to water transport in K+-starved sunflower plants but not in plants with a normal K+ status. Journal of plant physiology, 164(1), 60-67. doi:10.1016/j.jplph.2005.10.010
Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature communications, 6(1), 5989.
Rios-Gonzalez, K., Erdei, L., & Lips, S. H. (2002). The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources. Plant Science, 162(6), 923-930. doi: 10.1016/S0168-9452(02)00040-7
Schubert, S. (2009). Advances in alleviating growth limitations of maize under salt stress.
Schubert, S., Neubert, A., Schierholt, A., Sümer, A., & Zörb, C. (2009). Development of salt-resistant maize hybrids: the combination of physiological strategies using conventional breeding methods. Plant Science, 177(3), 196-202. doi:10.1016/j.plantsci.2009.05.011
Serna-Saldivar, S. O. (2023). Maize. In ICC Handbook of 21st Century Cereal Science and Technology (pp. 131-143). Academic Press.
Serraj, R. A. C. H. I. D., & Sinclair, T. R. (2002). Osmolyte accumulation: can it really help increase crop yield under drought conditions?. Plant, cell & environment, 25(2), 333-341. doi:10.1046/j.1365-3040.2002.0075.x
Smith, P., Gregory, P,J. (2013). Climate change and sustainable food production. Proceedings of the Nutrition Society, 72(1), 21-28.
Song, Y., Tian, J., Linderholm, H. W., Wang, C., Ou, Z., & Chen, D. (2021). The contributions of climate change and production area expansion to drought risk for maize in China over the last four decades. International Journal of Climatology, 41(S1), E2851-E2862.
Szalai, G., & Janda, T. (2009). Effect of salt stress on the salicylic acid synthesis in young maize (Zea mays L.) plants. Journal of agronomy and crop science, 195(3), 165-171. doi:10.1111/j.1439-037x.2008.00352.x
Tebaldi, C., & Lobell, D. (2018). Differences, or lack thereof, in wheat and maize yields under three low-warming scenarios. Environmental Research Letters, 13(6), 065001.
Wakeel, A., Sümer, A., Hanstein, S., Yan, F., & Schubert, S. (2011). In vitro effect of Na+/K+ ratios on the hydrolytic and pumping activity of the plasma membrane H+-ATPase from maize (Zea mays L.) and sugar beet (Beta vulgaris L.) shoot. Plant Physiology and Biochemistry, 49, 341-345. doi:10.1016/j.plaphy.2011.01.006
Xie, T., Gu, W., Meng, Y., Li, J., Li, L., Wang, Y., ... & Wei, S. (2017). Exogenous DCPTA ameliorates simulated drought conditions by improving the growth and photosynthetic capacity of maize seedlings. Scientific Reports, 7(1), 12684.
Xu, H., Twine, T. E., & Girvetz, E. (2016). Climate change and maize yield in Iowa. PloS one, 11(5), e0156083.
Yang, J., Sicher, R. C., Kim, M. S., & Reddy, V. R. (2014). Carbon dioxide enrichment restrains the impact of drought on three maize hybrids differing in water stress tolerance in water stressed environments. International Journal of Plant Biology, 5(1), 5535. Doi: 10.4081/pb.2014.5535
Younis, M.E., El-Shahaby, O.A., Nematalla, M.M., El-Basrawisy, Z.M. (2003). Kinetin alleviates the influence of waterlogging and salinity on growth and affects the production of plant growth regulators in Vigna sinensis and Zea mays. Agronomie, 23, 277–285.
Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., & Gómez‐Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia plantarum, 162(1), 2-12.
Zörb, C., Stracke, B., Tramnitz, B., Denter, D., Sümer, A., Mühling, K. H., ... & Schubert, S. (2005). Does H+ pumping by plasmalemma ATPase limit leaf growth of maize (Zea mays) during the first phase of salt stress?. Journal of Plant Nutrition and Soil Science, 168(4), 550-557. Doi:10.1002/jpln.200520503