Cornous Biology, Volume 2, Issue 1 : 36-44. Doi : 10.37446/corbio/ra/2.1.2024.36-44
Review Article

OPEN ACCESS | Published on : 31-Mar-2024

A review on abiotic stress resistance in maize: effect, resistance mechanism and management

  • Zabeehullah Burhan
  • Department of Botany, University of Agriculture, Faisalabad, Pakistan.
  • Hina Nazir
  • Department of Botany, University of Agriculture, Faisalabad, Pakistan.
  • Ayesha Arif
  • Department of Botany, University of Agriculture, Faisalabad, Pakistan.
  • Ehsan Ullah
  • Biological Sciences, University of Sargodha, Pakistan.
  • Ansar Abbas
  • Department of Biological Sciences, Thal University, Bhakkar, Pakistan.
  • Ammara Shoukat
  • Department of Botany, University of Agriculture, Faisalabad, Pakistan.
  • Abid Ali
  • Department of Botany, University of Agriculture, Faisalabad, Pakistan.
  • Qurat Ul Ain
  • Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan.

Abstract

Maize (Zea mays L.), a fundamental global staple, faces increasing threats to productivity due to two major abiotic stresses: drought and salt stress. This review synthesizes current research on the stresses on maize, elucidates the underlying resistance mechanisms, and explores management strategies to enhance stress resilience. The review first delineates the damaging effects of drought and salt stress on the growth of maize, development, and its yield. By consolidating information from diverse research areas, this review offers a comprehensive overview of drought and salt stress resistance in maize. The insights provided are valuable for researchers, breeders, and policymakers working towards sustainable maize production in the face of increasing environmental challenges. A holistic understanding of the intricate interplay between drought, salt stress, resistance mechanisms, and effective management strategies is essential for developing resilient maize varieties and ensuring global food security in a changing climate.

Keywords

climate change, productivity, resistance mechanisms, signal transduction, epigenetic modification, maize

References

  • Ahuja, I., de Vos, R. C., Bones, A. M., & Hall, R. D. (2010). Plant molecular stress responses face climate change. Trends in plant science15(12), 664-674.

    Akram, M., Ashraf, M. Y., Ahmad, R., Rafiq, M., Ahmad, I., & Iqbal, J. (2010). Allometry and yield components of maize (Zea mays L.) hybrids to various potassium levels under saline conditions. Archives of Biological Sciences62(4), 1053-1061. Doi: 10.2298/ABS1004053A

    Anjum, F., Yaseen, M., Rasul, E., Wahid, A., & Anjum, S. (2003). Water stress in barley (Hordeum vulgare L.). II. Effect on chemical composition and chlorophyll contents. Pak. J. Agric. Sci40(1-2), 45-49.

    Ashraf, M., & Foolad, M. R. (2005). Pre‐sowing seed treatment—A shotgun approach to improve germination, plant growth, and crop yield under saline and non‐saline conditions. Advances in agronomy88, 223-271. Doi: 10.1016/ S0065-2113(05)88006-X

    Bänzinger, M. (2000). Breeding for drought and nitrogen stress tolerance in maize: from theory to practice. Cimmyt.

    Basu, S., Ramegowda, V., Kumar, A., & Pereira, A. (2016). Plant adaptation to drought stress. F1000Research5.

    Bhatt, R., Kukal, S. S., Busari, M. A., Arora, S., & Yadav, M. (2016). Sustainability issues on rice–wheat cropping system. International Soil and Water Conservation Research4(1), 64-74.

    Challinor, A. J., Simelton, E. S., Fraser, E. D., Hemming, D., & Collins, M. (2010). Increased crop failure due to climate change: assessing adaptation options using models and socio-economic data for wheat in China. Environmental Research Letters5(3), 034012.

    Choudhary, M., Singh, A., Gupta, M., & Rakshit, S. (2020). Enabling technologies for utilization of maize as a bioenergy feedstock. Biofuels, Bioprod. Bioref. 14, 402–416. doi: 10.1002/bbb.2060

    Cosgrove, D. J. (2000). Loosening of plant cell walls by expansins. Nature407(6802), 321-326. Doi: 10.1038/35030000

    Davenport, R., James, R. A., Zakrisson-Plogander, A., Tester, M., & Munns, R. (2005). Control of sodium transport in durum wheat. Plant physiology137(3), 807-818. Doi: 10.1104/pp. 104.057307

    Eker, S., Cömertpay, G., Konuşkan, Ö., Ülger, A. C., Öztürk, L., & Çakmak, İ. (2006). Effect of salinity stress on dry matter production and ion accumulation in hybrid maize varieties. Turkish journal of agriculture and forestry30(5), 365-373.

    El-Bassiouny, H. M. S., & Bekheta, M. A. (2005). Role of putrescine on growth, regulation of stomatal aperture, ionic contents and yield by two wheat cultivars under salinity stress.

    Ezin, V., Tosse, A. G. C., Chabi, I. B., & Ahanchede, A. (2021). Adaptation of cowpea (Vigna unguiculata (L.) Walp.) to water deficit during vegetative and reproductive phases using physiological and agronomic characters. International Journal of Agronomy2021(1), 9665312.

    Fageria, N. K., Baligar, V. C., & Li, Y. C. (2008). The role of nutrient efficient plants in improving crop yields in the twenty first century. Journal of plant nutrition31(6), 1121-1157.

    Farooq, M., Wahid, A., Kobayashi, N. S. M. A., Fujita, D. B. S. M. A., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Sustainable agriculture, 153-188.

    Farooqi, M. Q. U., Nawaz, G., Wani, S. H., Choudhary, J. R., Rana, M., Sah, R. P., ... & Siddique, K. H. (2022). Recent developments in multi-omics and breeding strategies for abiotic stress tolerance in maize (Zea mays L.). Frontiers in Plant Science13, 965878.

    Farsiani, A., & Ghobadi, M. E. (2009). Effects of PEG and NaCl stress on two cultivars of corn (Zea mays L.) at germination and early seedling stages. International Journal of Agricultural and Biosystems Engineering3(9), 442-445.

    Flowers, T. J., & Flowers, S. A. (2005). Why does salinity pose such a difficult problem for plant breeders?. Agricultural water management78(1-2), 15-24. Doi: 10. 1016/j.agwat.2005.04.015

    Gonzalez Guzman, M., Cellini, F., Fotopoulos, V., Balestrini, R., & Arbona, V. (2022). New approaches to improve crop tolerance to biotic and abiotic stresses. Physiologia plantarum174(1), e13547.

    Gunes, A., Inal, A., Alpaslam, M., Erslan, F., Bagsi, E.G., Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164,728–736. Doi: 10.1016/j.jplph.2005.12.009

    Hager, A. (2003). Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. Journal of plant research116, 483-505. Doi: 10.1007/s10265-003-0110-x

    Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual review of plant biology51(1), 463-499. doi: 1040-2519/00/0601-0463

    Hichem, H., & Mounir, D. (2009). Differential responses of two maize (Zea mays L.) varieties to salt stress: changes on polyphenols composition of foliage and oxidative damages. Industrial crops and Products30(1), 144-151. doi:10.1016/j.indcrop.2009.03.003

    Hossain, A., Skalicky, M., Brestic, M., Maitra, S., Ashraful Alam, M., Syed, M. A., ... & Islam, T. (2021). Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy11(2), 241.

    Iqbal, M. M., Goheer, M. A., & Khan, A. M. (2009). Climate-change aspersions on food security of Pakistan. Science Vision15(1), 15-23.

    Jafar, M. Z., Farooq, M., Cheema, M. A., Afzal, I., Basra, S. M. A., Wahid, M. A., ... & Shahid, M. (2012). Improving the performance of wheat by seed priming under saline conditions. Journal of Agronomy and Crop Science198(1), 38-45. doi: 10.1111/j.1439-037x.2011.00487.x

    Janmohammadi, M., Dezfuli, P. M., & Sharifzadeh, F. (2008). Seed invigoration techniques to improve germination and early growth of inbred line of maize under salinity and drought stress. Gen Appl Plant Physiol34(3-4), 215-226.

    Kaya, C., Tuna, A. L., & Okant, A. M. (2010). Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turkish Journal of Agriculture and Forestry34(6), 529-538. doi: 10.3906/tar-0906-173

    Khajeh-Hosseini, M., Powell, A. A., & Bingham, I. J. (2003). The interaction between salinity stress and seed vigour during germination of soyabean seeds. Seed Science and technology31(3), 715-725.

    Kooyers, N. J. (2015). The evolution of drought escape and avoidance in natural herbaceous populations. Plant science234, 155-162.

    Lawson, T., Oxborough, K., Morison, J. I., & Baker, N. R. (2003). The responses of guard and mesophyll cell photosynthesis to CO2, O2, light, and water stress in a range of species are similar. Journal of experimental botany54(388), 1743-1752.

    Li, B., Li, N., Duan, X., Wei, A., Yang, A., & Zhang, J. (2010). Generation of marker-free transgenic maize with improved salt tolerance using the FLP/FRT recombination system. Journal of Biotechnology145(2), 206-213. doi:10.1016/j.jbiotec.2009.11.010

    Lobell, D. B., & Field, C. B. (2007). Global scale climate–crop yield relationships and the impacts of recent warming. Environmental research letters2(1), 014002.

    Malenica, N., Dunić, J. A., Vukadinović, L., Cesar, V., & Šimić, D. (2021). Genetic approaches to enhance multiple stress tolerance in maize. Genes12(11), 1760.

    Mao, H., Wang, H., Liu, S., Li, Z., Yang, X., Yan, J., ... & Qin, F. (2015). A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nature communications6(1), 8326.

    Menezes-Benavente, L., Kernodle, S. P., Margis-Pinheiro, M., & Scandalios, J. G. (2004). Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings. Redox report9(1), 29-36. doi: 10.1179/135100004225003888

    Meng QingFeng, M. Q., Chen XinPing, C. X., Lobell, D. B., Cui ZhenLing, C. Z., Zhang Yi, Z. Y., Yang HaiShun, Y. H., & Zhang FuSuo, Z. F. (2017). Growing sensitivity of maize to water scarcity under climate change.

    Miao ZhenYan, M. Z., Han ZhaoXue, H. Z., Zhang Ting, Z. T., Chen SiYuan, C. S., & Ma Chuang, M. C. (2019). A systems approach to a spatio-temporal understanding of the drought stress response in maize.

    Miao ZhenYan, M. Z., Han ZhaoXue, H. Z., Zhang Ting, Z. T., Chen SiYuan, C. S., & Ma Chuang, M. C. (2019). A systems approach to a spatio-temporal understanding of the drought stress response in maize.

    Moriondo, M., Giannakopoulos, C., & Bindi, M. (2011). Climate change impact assessment: the role of climate extremes in crop yield simulation. Climatic change104(3-4), 679-701.

    Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., & Foley, J. A. (2012). Closing yield gaps through nutrient and water management. Nature490(7419), 254-257.

    Osmolovskaya, N., Shumilina, J., Kim, A., Didio, A., Grishina, T., Bilova, T., ... & Wessjohann, L. A. (2018). Methodology of drought stress research: Experimental setup and physiological characterization. International journal of molecular sciences19(12), 4089.

    Pitann, B., Zörb, C., & Mühling, K. H. (2009). Comparative proteome analysis of maize (Zea mays L.) expansins under salinity. Journal of Plant Nutrition and Soil Science172(1), 75-77. doi:10.1002/jpln.200800265

    Qu, C., Liu, C., Gong, X., Li, C., Hong, M., Wang, L., & Hong, F. (2012). Impairment of maize seedling photosynthesis caused by a combination of potassium deficiency and salt stress. Environmental and experimental botany75, 134-141. doi:10.1016/j.envexpbot.2011.08.019

    Quintero, J. M., Fournier, J. M., & Benlloch, M. (2007). Na+ accumulation in shoot is related to water transport in K+-starved sunflower plants but not in plants with a normal K+ status. Journal of plant physiology164(1), 60-67. doi:10.1016/j.jplph.2005.10.010

    Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature communications6(1), 5989.

    Rios-Gonzalez, K., Erdei, L., & Lips, S. H. (2002). The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources. Plant Science162(6), 923-930. doi: 10.1016/S0168-9452(02)00040-7

    Schubert, S. (2009). Advances in alleviating growth limitations of maize under salt stress.

    Schubert, S., Neubert, A., Schierholt, A., Sümer, A., & Zörb, C. (2009). Development of salt-resistant maize hybrids: the combination of physiological strategies using conventional breeding methods. Plant Science177(3), 196-202. doi:10.1016/j.plantsci.2009.05.011

    Serna-Saldivar, S. O. (2023). Maize. In ICC Handbook of 21st Century Cereal Science and Technology (pp. 131-143). Academic Press.

    Serraj, R. A. C. H. I. D., & Sinclair, T. R. (2002). Osmolyte accumulation: can it really help increase crop yield under drought conditions?. Plant, cell & environment25(2), 333-341. doi:10.1046/j.1365-3040.2002.0075.x

    Smith, P., Gregory, P,J. (2013). Climate change and sustainable food production. Proceedings of the Nutrition Society, 72(1), 21-28.

    Song, Y., Tian, J., Linderholm, H. W., Wang, C., Ou, Z., & Chen, D. (2021). The contributions of climate change and production area expansion to drought risk for maize in China over the last four decades. International Journal of Climatology41(S1), E2851-E2862.

    Szalai, G., & Janda, T. (2009). Effect of salt stress on the salicylic acid synthesis in young maize (Zea mays L.) plants. Journal of agronomy and crop science195(3), 165-171. doi:10.1111/j.1439-037x.2008.00352.x

    Tebaldi, C., & Lobell, D. (2018). Differences, or lack thereof, in wheat and maize yields under three low-warming scenarios. Environmental Research Letters13(6), 065001.

    Wakeel, A., Sümer, A., Hanstein, S., Yan, F., & Schubert, S. (2011). In vitro effect of Na+/K+ ratios on the hydrolytic and pumping activity of the plasma membrane H+-ATPase from maize (Zea mays L.) and sugar beet (Beta vulgaris L.) shoot. Plant Physiology and Biochemistry49, 341-345. doi:10.1016/j.plaphy.2011.01.006

    Xie, T., Gu, W., Meng, Y., Li, J., Li, L., Wang, Y., ... & Wei, S. (2017). Exogenous DCPTA ameliorates simulated drought conditions by improving the growth and photosynthetic capacity of maize seedlings. Scientific Reports7(1), 12684.

    Xu, H., Twine, T. E., & Girvetz, E. (2016). Climate change and maize yield in Iowa. PloS one11(5), e0156083.

    Yang, J., Sicher, R. C., Kim, M. S., & Reddy, V. R. (2014). Carbon dioxide enrichment restrains the impact of drought on three maize hybrids differing in water stress tolerance in water stressed environments. International Journal of Plant Biology5(1), 5535. Doi: 10.4081/pb.2014.5535

    Younis, M.E., El-Shahaby, O.A., Nematalla, M.M., El-Basrawisy, Z.M. (2003). Kinetin alleviates the influence of waterlogging and salinity on growth and affects the production of plant growth regulators in Vigna sinensis and Zea mays. Agronomie, 23, 277–285.

    Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., & Gómez‐Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia plantarum162(1), 2-12.

    Zörb, C., Stracke, B., Tramnitz, B., Denter, D., Sümer, A., Mühling, K. H., ... & Schubert, S. (2005). Does H+ pumping by plasmalemma ATPase limit leaf growth of maize (Zea mays) during the first phase of salt stress?. Journal of Plant Nutrition and Soil Science168(4), 550-557. Doi:10.1002/jpln.200520503