Microalgae offer a sustainable approach for removing heavy metals from industrial effluents. This study evaluated the ability of Chlorella minutissima to tolerate and remove Cd²⁺, Cr⁶⁺, Pb²⁺, and Zn²⁺ from synthetic wastewater under optimized growth conditions (27 ± 1 °C, pH 7.5, 14:10 h light: dark cycle, 2000–2500 lux, 100 mgL⁻¹ glucose, initial density ≥10⁶ cells mL⁻¹). Growth responses and metal uptake were assessed across concentrations of 0.5–10 mgL⁻¹. Results showed strong variability among metals. At 0.5 mgL⁻¹, the highest removal percentage was recorded for Zn²⁺ (98.63%), followed by Pb²⁺ (93.15%), Cr⁶⁺ (85.69%), and Cd²⁺ (40.49%). However, Pb²⁺ exhibited the highest absolute uptake amount (6.86 µg per 100 mL) at 3 mgL⁻¹, while Cr⁶⁺ underwent significant intracellular reduction to Cr³⁺. Growth inhibition was most pronounced under Cd²⁺ exposure, followed by Cr⁶⁺, Pb²⁺, and Zn²⁺. Negative controls confirmed normal growth in the absence of metals. These findings indicate that C. minutissima is an effective biosorbent for low concentrations of Pb²⁺, Zn²⁺, and Cr⁶⁺ under laboratory conditions. While the results highlight its potential for wastewater treatment, further studies using real effluents and pilot-scale systems are necessary to establish practical applicability.
Chlorella minutissima, Heavy metals, Bioremoval, Bioadsorption, Bioabsorption, Bioreduction, Wastewater treatment
Ahmed, M., Mavukkandy, M. O., Giwa, A., Elektorowicz, M., Katsou, E., Khelifi, O., & Hasan, S. W. (2022). Recent developments in hazardous pollutants removal from wastewater and water reuse within a circular economy. NPJ Clean Water, 5(1), 12.
Areco, M. M., Hanela, S., Duran, J., & Afonso, M. D. S. (2012). Biosorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation. Journal of Hazardous Materials, 213–214, 123–132. https://doi.org/10.1016/j.jhazmat.2012.01.073.
ASTM. (2006). Standard guide for conducting static toxicity tests with microalgae (E 1218-04). ASTM International.
ASTM. (2010). Standard Test Method for the Determination of Hexavalent Chromium in Workplace Air by Ion Chromatography and Spectrophotometric Measurement Using 1,5-diphenylcarbazide (ASTM D6832 - 08). American Society for Testing and Materials, United States.
Bates, S. S., Tessier, A., Campbell, P. G. C., & Buffle, J. (1982). Zinc adsorption and transport by Chlamydomonas variabilis and Scenedesmus subspicatus (Chlorophyceae) grown in semi-continuous cultures. Journal of Phycology, 18(4), 521–529.
Becker, E. W. (1994). Microalgae: Biotechnology and microbiology. Cambridge University Press.
Bhatnagar, A., Bhatnagar, M., Chinnasamy, S., & Das, K. C. (2010). Chlorella minutissima—A promising fuel alga for cultivation in municipal wastewaters. Applied Biochemistry and Biotechnology, 161(1–8), 523–536.
Cao, J., Yuan, H., Li, B., & Yang, J. (2014). Significance evaluation of the effects of environmental factors on the lipid accumulation of Chlorella minutissima UTEX 2341 under low-nutrition heterotrophic condition. Bioresource Technology, 152, 177–184.
Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS quarterly, 1165-1188.
Cornelis, R., Caruso, J., Crews, H., & Heumann, K. G. (2004). Handbook of elemental speciation: Techniques and methodology. John Wiley & Sons.
Cummings, D. E., Fendorf, S., Singh, N., Sani, R. K., Peyton, B. M., & Magnuson, T. S. (2007). Reduction of Cr(VI) under acidic conditions by the facultative Fe(III)-reducing bacterium Acidiphilium cryptum. Environmental Science & Technology, 41(1), 146–152.
Danouche, M., El Ghatchouli, N., & Arroussi, H. (2022). Overview of the management of heavy metals toxicity by microalgae. Journal of Applied Phycology, 34(1), 475-488.
Dao, T.-S., Le, N.-H.-S., Vo, M.-T., Vo, T.-M.-C., & Phan, T.-H. (2018). Growth and metal uptake capacity of microalgae under exposure to chromium. Journal of Vietnamese Environment, 9(1), 38–43.
Dheri, G. S., Brar, M. S., & Malhi, S. S. (2007). Heavy‐metal concentration of sewage‐contaminated water and its impact on underground water, soil, and crop plants in alluvial soils of northwestern India. Communications in Soil Science and Plant Analysis, 38(9-10), 1353-1370.
Eaton, A. D., Clesceri, L. S., Rice, E. W., & Greenberg, A. E. (Eds.). (2005). Standard methods for the examination of water and wastewater (21st ed.). American Public Health Association (APHA) Press. Washington, DC.
Ge, Z., Zhang, H., Zhang, Y., Yan, C., & Zhao, Y. (2013). Purifying synthetic high-strength wastewater by microalgae chlorella vulgaris under various light emitting diode wavelengths and intensities. Journal of Environmental Health Science and Engineering, 11(1), 8.
Jais, N. M., Mohamed, R. M. S. R., Al-Gheethi, A. A., & Hashim, M. A. (2017). The dual roles of phycoremediation of wet market wastewater for nutrients and heavy metals removal and microalgae biomass production. Clean Technologies and Environmental Policy, 19(1), 37–52.
Janssen, M. G. J. (2002). Cultivation of microalgae: Effect of light/dark cycles on biomass yield (Doctoral dissertation). Wageningen University, Netherlands.
Jyoti, J., & Awasthi, M. (2014). Bioremediation of wastewater chromium through microalgae: a review. Int J Eng Res, 3, 1210-1215.
Khurana, M. P. S., Nayyar, V. K., Bansal, R. L., & Singh, M. V. (2003). Heavy metal pollution in soils and plants through untreated sewage water. In V. P. Singh & R. N. Yadava (Eds.), Ground water pollution, water and environment: Proceedings of the International Conference on Water and Environment (WE-2003), Dec. 15–18 (Vol. 1518, pp. 487–490). Allied Publishers Pvt. Ltd.
Kinuthia, G. K., Ngure, V., Beti, D., Lugalia, R., Wangila, A., & Kamau, L. (2020). Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Scientific reports, 10(1), 8434.https://doi.org/10.1038/s41598-020-65359-5.
Koju, P., Shrestha, R., Shrestha, A., Tamrakar, S., Rai, A., Shrestha, P., ... & Shakya Shrestha, S. (2022). Antimicrobial resistance in E. coli isolated from chicken cecum samples and factors contributing to antimicrobial resistance in Nepal. Tropical Medicine and Infectious Disease, 7(9), 249.
Lavrinovičs, A., & Juhna, T. (2017). Review on challenges and limitations for algae-based wastewater treatment. Construction Science, 20(1), 17–25.
Lovley, D. R., & Phillips, E. J. P. (1994). Reduction of chromate by Desulfovibrio vulgaris and its c₃ cytochrome. Applied and Environmental Microbiology, 60(2), 726–728. https://doi.org/10.1128/aem.60.2.726-728.1994.
Luo, C. L. (2003). The mechanisms of heavy metal uptake and accumulation in plants. Chinese Bulletin of Botany, 20(1), 59–64.
Malakootian, M., Yousefi, Z., & Limoni, Z. K. (2019). Removal of lead from battery industry wastewater by Chlorella vulgaris as green micro-algae (Case study: Kerman, Iran). Desalination and Water Treatment, 141, 248–255.
Malla, F. A., Khan, S. A., Sharma, G. K., Gupta, N., & Abraham, G. J. E. E. (2015). Phycoremediation potential of Chlorella minutissima on primary and tertiary treated wastewater for nutrient removal and biodiesel production. Ecological Engineering, 75, 343–349.
Mallick, N., & Rai, L. C. (1993). Influence of culture density, pH, organic acids and divalent cations on the removal of nutrients and metals by immobilized Anabaena doliolum and Chlorella vulgaris. World Journal of Microbiology and Biotechnology, 9(2), 196–201.
McKay, G., & Porter, J. F. (1997). Equilibrium parameters for the sorption of copper, cadmium and zinc ions onto peat. Journal of Chemical Technology & Biotechnology, 69(3), 309-320.
Min, M., Wang, L., Li, Y., Mohr, M. J., Hu, B., Zhou, W., & Ruan, R. (2011). Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Applied Biochemistry and Biotechnology, 165(1), 123–137. https://doi.org/10.1007/s12010-011-9238-7.
Monteiro, C. M., Castro, P. M. L., & Malcata, F. X. (2012). Metal uptake by microalgae: Underlying mechanisms and practical applications. Biotechnology Progress, 28(2), 299–311. https://doi.org/10.1002/btpr.1504.
Novák, Z., Harangi, S., Baranyai, E., Gonda, S., Béres, V. B., & Bácsi, I. (2020). Effects of metal quantity and quality on the removal of zinc and copper by two common green microalgae (Chlorophyceae) species. Phycological Research, 68(3), 227–235.
Olasehinde, T. A., Olaniran, A. O., & Okoh, A. I. (2019). Phenolic composition, antioxidant activity, anticholinesterase potential and modulatory effects of aqueous extracts of some seaweeds on β-amyloid aggregation and disaggregation. Pharmaceutical Biology, 57(1), 460–469.
Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., Burns, A. S., ... & Ballard, C. G. (2010). Putting brain training to the test. Nature, 465(7299), 775-778.
Perez-García, O., Escalante, F. M. E., de-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 45(1), 11–36. https://doi.org/10.1016/j.watres.2010.08.037.
Pérez-Rama, M., Alonso, J. A., López, C. H., & Vaamonde, E. (2002). Cadmium removal by living cells of marine microalga Tetraselmis suecica. Bioresource Technology, 84(3), 265–270.
Rajalakshmi, A. M., Silambarasan, T., & Dhandapani, R. (2021). Small-scale photobioreactor treatment of tannery wastewater, heavy metal biosorption and CO₂ sequestration using microalga Chlorella sp.: A biodegradation approach. Applied Water Science, 11(7), 108.
Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111(1), 1–61. https://doi.org/10.1099/00221287-111-1-1.
Roberts, D. A., de Nys, R., & Paul, N. A. (2013). The effect of CO₂ on algal growth in industrial wastewater for bioenergy and bioremediation applications. PLoS One, 8(11), e81631. https://doi.org/10.1371/journal.pone.0081631.
Salama, E. S., Roh, H. S., Dev, S., Khan, M. A., Abou-Shanab, R. A., Chang, S. W., & Jeon, B. H. (2019). Algae as a green technology for heavy metals removal from various wastewater. World Journal of Microbiology and Biotechnology, 35(5), 75.
Satoh, A., Vudikaria, L. Q., Kurano, N., & Miyachi, S. (2005). Evaluation of the sensitivity of marine microalgal strains to the heavy metals, Cu, As, Sb, Pb and Cd. Environment International, 31(5), 713–722.
Saud, S., Wang, D., Fahad, S., Javed, T., Jaremko, M., Abdelsalam, N. R., & Ghareeb, R. Y. (2022). The impact of chromium ion stress on plant growth, developmental physiology, and molecular regulation. Frontiers in Plant Science, 13, 994785. https://doi.org/10.3389/fpls.2022.994785.
Saxena, G., Kumar, L., Hariri, S. M., Roy, A., Kundu, K., & Bharadvaja, N. (2016). Identification of potential culture conditions for enhancing the biomass production of microalga Chlorella minutissima. Expert Opinion on Environmental Biology, 1(2), 1–6.
Shuler, M. L., & Kargi, F. (2002). Bioprocess engineering: Basic concepts (2nd ed.). Prentice Hall.
Singh, S. K., Bansal, A., Jha, M. K., & Dey, A. (2011). Comparative studies on uptake of wastewater nutrients by immobilized cells of Chlorella minutissima and dairy waste isolated algae. Indian Chemical Engineer, 53(4), 205–213.
Singh, S. K., Bansal, A., Jha, M. K., & Dey, A. (2012). An integrated approach to remove Cr(VI) using immobilized Chlorella minutissima grown in nutrient rich sewage wastewater. Bioresource Technology, 104, 257–265.
Singh, S. K., Bansal, A., Jha, M. K., & Jain, R. (2013). Production of biodiesel from wastewater grown Chlorella minutissima. Indian Journal of Chemical Technology, 20(5), 341–345.
Spain, O., Plöhn, M., & Funk, C. (2021). The cell wall of green microalgae and its role in heavy metal removal. Physiologia Plantarum, 173(2), 526–535.
Sultana, N., Hossain, S. Z., Mohammed, M. E., Irfan, M. F., Haq, B., Faruque, M. O., ... & Hossain, M. M. (2020). Experimental study and parameters optimization of microalgae based heavy metals removal process using a hybrid response surface methodology-crow search algorithm. Scientific Reports, 10(1), 15068.https://doi.org/10.1038/s41598-020-72236-8.
Yang, J., Cao, J., Xing, G., & Yuan, H. (2015). Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX 2341. Bioresource Technology, 175, 537–544.
Zhu, M., Nie, G., Meng, H., Xia, T., Nel, A., & Zhao, Y. (2013). Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Accounts of Chemical Research, 46(3), 622–631. https://doi.org/10.1021/ar300031y.