Cornous Biology, Volume 1, Issue 2 : 1-5. Doi : 10.37446/corbio/ra/1.2.2023.1-5
Review Article

OPEN ACCESS | Published on : 30-Sep-2023

Bridging plant cells: ultrastructure, regulation, and role of plasmodesmata in assimilate partitioning

  • Sonali Vergin Philips
  • Adhiparasakthi Agricultural College, G.B. Nagar, Kalavai, Ranipet - 632 506, Tamil Nadu, India.
  • Roshini Kuppusamy
  • Adhiparasakthi Agricultural College, G.B. Nagar, Kalavai, Ranipet - 632 506, Tamil Nadu, India.
  • Chandrasekaran Perumal
  • SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Chengalpattu- 603 201, Tamil Nadu, India.
  • Selvakumar Gurunathan
  • SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Chengalpattu- 603 201, Tamil Nadu, India.
  • Ashokkumar Natarajan
  • SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Chengalpattu- 603 201, Tamil Nadu, India.
  • Ashok Subiramaniyan
  • Adhiparasakthi Agricultural College, G.B. Nagar, Kalavai, Ranipet - 632 506, Tamil Nadu, India.
  • Akshayaa Guhan
  • Adhiparasakthi Agricultural College, G.B. Nagar, Kalavai, Ranipet - 632 506, Tamil Nadu, India.

Abstract

Plasmodesmata are microscopic channels that connect adjacent plant cells, enabling direct symplastic transport of molecules, including photoassimilates. They play a crucial role in intercellular communication and the regulation of assimilate translocation from source to sink tissues. The structure, frequency, and permeability of plasmodesmata influence the efficiency of sucrose and other carbohydrate movement, impacting plant growth and yield. This review explores the ultrastructure of plasmodesmata, the molecular mechanisms governing their regulation, and their role in assimilate partitioning under normal and stress conditions. Emphasis is placed on recent advances in imaging techniques, molecular gating, and the integration of plasmodesmal function with phloem loading and unloading strategies. Understanding these pathways offers insights for improving crop productivity through targeted manipulation of assimilate transport mechanisms.

Keywords

Plasmodesmata, symplastic transport, phloem loading, source–sink relationship

References

  • Alfonso, Y. B., Cantrill, L., & Jackson, D. (2006). Plasmodesmata: Cell-cell channels in plants. In Cell-cell channels (pp. 101-112). New York, NY: Springer New York.

    Bhatla, S. C. (2018). Water and solute transport. In Plant Physiology, Development and Metabolism (pp. 83-115). Singapore: Springer Nature Singapore.

    Burch-Smith, T. M., Stonebloom, S., Xu, M., & Zambryski, P. C. (2011). Plasmodesmata during development: re-examination of the importance of primary, secondary, and branched plasmodesmata structure versus function. Protoplasma248(1), 61-74.

    Comtet, J., Jensen, K. H., Turgeon, R., Stroock, A. D., & Hosoi, A. E. (2017). Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip. Nature Plants3(4), 1-8.

    Fu, Q., Cheng, L., Guo, Y., & Turgeon, R. (2011). Phloem loading strategies and water relations in trees and herbaceous plants. Plant Physiology157(3), 1518-1527.

    Heinlein, M. (2014). Plasmodesmata: channels for viruses on the move. Plasmodesmata: Methods and Protocols, 25-52.

    Kleinow, T. (2016). Plant-Virus Interactions. Molecular Biology, Intra-and Intercellular Transport. Springer International Publishing Switzerland.

    Pankratenko, A. V., Atabekova, A. K., Morozov, S. Y., & Solovyev, A. G. (2020). Membrane contacts in plasmodesmata: structural components and their functions. Biochemistry (Moscow)85(5), 531-544.

    Quader, H., & Zachariadis, M. (2006). The morphology and dynamics of the ER. In The Plant Endoplasmic Reticulum (pp. 1-23). Berlin, Heidelberg: Springer Berlin Heidelberg.

    Radford, J. E., & White, R. G. (2011). Inhibitors of myosin, but not actin, alter transport through Tradescantia plasmodesmata. Protoplasma248(1), 205-216.

    Salvi, P., Kumar, B., Kamble, N. U., Hazra, A., & Majee, M. (2021). A conserved NAG motif is critical to the catalytic activity of galactinol synthase, a key regulatory enzyme of RFO biosynthesis. Biochemical Journal478(21), 3939-3955.

    Sanyal, R., Kumar, S., Pattanayak, A., Kar, A., & Bishi, S. K. (2023). Optimizing raffinose family oligosaccharides content in plants: A tightrope walk. Frontiers in Plant Science14, 1134754.

    Savage, J. A., Beecher, S. D., Clerx, L., Gersony, J. T., Knoblauch, J., Losada, J. M., ... & Holbrook, N. M. (2017). Maintenance of carbohydrate transport in tall trees. Nature plants3(12), 965-972.

    Schulz, A. (2015). Diffusion or bulk flow: how plasmodesmata facilitate pre-phloem transport of assimilates. Journal of Plant Research128(1), 49-61.

    Slewinski, T. L., Zhang, C., & Turgeon, R. (2013). Structural and functional heterogeneity in phloem loading and transport. Frontiers in Plant Science4, 244.

    Wu, J., Wu, Q., Bo, Z., Zhu, X., Zhang, J., Li, Q., & Kong, W. (2022). Comprehensive effects of Flowering Locus T-mediated stem growth in tobacco. Frontiers in Plant Science13, 922919.

    You, M., & Jaffrey, S. R. (2015). Structure and mechanism of RNA mimics of green fluorescent protein. Annual review of biophysics44(1), 187-206.