Background: Different parts of A. conyzoides have been widely used in traditional medicine for therapeutic purposes, and it contains enormous secondary metabolites such as phenolics with varied biological activities. Poor druggability has caused many candidate compounds showing excellent in-vitro efficacy to be dismissed, which can be minimized in early drug discovery by in-silico drug-like prediction and virtual screening. Thus, this study was aimed at evaluating the antidiabetic potentials of phenolic compounds (furocoumarinic acid, liquiritin, isorhamnetin and syringin) identified from ethyl acetate fraction of A. conyzoides methanol leaf extract.
Methods: SwissADME and ADMETlab 2.0 software tools were used to predict the drug-likeness of the compounds, and AutoDock Vina and UCSF Chimera were used for docking studies. The compound that showed best interaction with receptors (target proteins) was then experimentally validated through fasting blood glucose (FBG) assay.
Results: Findings of this study indicated that all the four phenolics were found to have good drug-like potential according to the rule-based filter models, with oral bioavailability scores of 55% better than acarbose (17%). However, of the four phenolics, only isorhamnetin was able to demonstrate good interactions with target receptors, indicating an outstanding inhibitory effect on aldose reductase (AR), dipeptidyl peptidase 4, and glutamine fructose-6-phosphate amidotransferase (GFAT). Experimental validation indicated that FBG levels of the diabetic control (untreated) group, acarbose- and isorhamnetin-treated groups were 421.00±9.10, 232.40±6.15, and 239.60±8.56 mg/dL, respectively, with a corresponding percentage decrease of 10.65±3.20, 52.07±1.78, and 50.13±2.60 respectively.
Conclusion: This study has demonstrated that furocoumarinic acid, liquiritin, isorhamnetin, and syringin from ethyl acetate fraction of A. conyzoides methanol leaf exhibited good drug-likeness potentials with 55% oral bioavailability. Out of which, only isorhamnetin was able to inhibit AR, DPP-4, and GFAT activities, and activate glucokinase through docking studies.
Ageratum conyzoides, phenolics, druggability, molecular docking, isorhamnetin, and diabetes mellitus
Anand, S., Arasakumari, M., Prabu, P. & Amalraj, A. R. (2016). Anti-Diabetic and Aldose Reductase Inhibitory Potential of Psidium Guajava by In-Vitro Analysis. International Journal of Pharmacy and Pharmaceutical Sciences, 8(9), 271-276.
Anurak, C. & Kesara, N. B. (2018). “A systematic review: application of in silico models for antimalarial drug discovery,” African Journal of Pharmacy and Pharmacology, 12(13), 159-167.
Atawodi, S. E., Adepoju, O. A., & Nzelibe, H. C. (2017). Antihyperglycaemic and hypolipidemic effect of methanol extracts of Ageratum conyzoides L (Asteraceae) in normal and diabetic rats. Tropical Journal of Pharmaceutical Research, 16(5), 989–996.
Batool, M., Ahmad, B. & Choi, S. (2019). “A structure-based drug discovery paradigm,” International Journal of Molecular Sciences, 20(11), 2783.
Bhinge. A., Chakrabarti, P., Uthanumallian, K., Bajaj, K., Chakraborty, K., et al. (2004) Accurate detection of protein-ligand binding sites using molecular dynamics simulations. Structure, 12: 1989–1999.
Bhowmick, A. & Banu, S. (2017). Therapeutic targets of type 2 diabetes: an overview. MOJ Drug Design and Development Therapy; 1(3), 60‒64.
Biovia, D. S. (2021). Discovery Studio Visualizer. San Diego.
Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G., et al. (2021). RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering, and energy sciences. Nucleic Acids Research, 49, D437–D451.
Buse, M.G. (2006). Hexosamines, insulin resistance, and the complications of diabetes: current status. American Journal of Physiology Endocrinology and Metabolism, 290(1): 1–8.
Chee, W., Egan, C. & Egan, J. M. (2009). Incretin-Based Therapies in Type 2 Diabetes Mellitus. Current Protein and Peptide Science, 10, 46-55.
Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S. M., & Savidge, T. C. (2016). Regulation of protein-ligand binding affinity by hydrogen bond pairing. Science advances, 2(3), e1501240. https://doi.org/10.1126/sciadv.1501240
Correia-Santos, A. M., Suzuki, A., Anjos, J. S., Rêgo, T. S., Almeida, K. C. L. & Boaventura, G. T. (2012). Induction of Type 2 Diabetes by low dose of streptozotocin and high-fat diet-fed in wistar rats. Medicina (Ribeirão Preto), 45(4), 436-444.
Cournia, Z., Allen, B. & Sherman, W. (2017). Relative binding free energy calculations in drug discovery: recent advances and practical considerations. Journal of Chemical Informatic Model, 57, 2911–2937. https://doi.org/10.1021/acs.jcim.7b00564
Daina, A., Olivier, M., & Vincent, Z. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Report; 7, 42717.
Darenskaya, M. A., Kolesnikova, L. I. & Kolesnikov, S. I. (2021). Oxidative Stress: Pathogenetic Role in Diabetes Mellitus and Its Complications and Therapeutic Approaches to Correction. Bulletin of Experimental Biology and Medicine, 171(2),179-189. https://doi.org/10.1007/s10517-021-05191-7
de Carvalho, E. N., de Carvalho, N. A. S. & Ferreira, L. M. (2003). Experimental model of induction of diabetes mellitus in rats. Acta Cir. Bras; 18: 60–64.
Egan, W. J., Merz, K. M. & Baldwin, J. J. (2000). Prediction of Drug Absorption Using Multivariate Statistics. Journal of Medicinal Chemistry, 43, 3867-3877.
Fatema, N. (2013). Antioxidant and cytotoxic activities of Ageratum conyzoides stems. International Current Pharmaceutical Journal, 2, 33-37.
Gaderer, R., Seidl-Seiboth, V., de Vries, R. P., Seiboth, B. & Kappel, L. (2017). N-acetylglucosamine, the building block of chitin, inhibits growth of Neurospora crassa. Fungal Genetics and Biology, 107, 1–11.
Ghose, A. K., Viswanadhan, V. N. & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery: A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1: 55–68.
Gleeson, M. P. (2008). Generation of a set of simple, interpretable ADMET rules of thumb. Journal of Medicinal Chemistry, 51(4), 817-34.
Guang-Zhi, D., Ju-Hee, L., Sung-Hwan, K., Ji-Hye, Y., Il-Je, C., Seung, H. K. et al. (2014). AMPK activation by isorhamnetin protects hepatocytes against oxidative stress and mitochondrial dysfunction. European Journal of Pharmacology, 740, 634-640. https://doi.org/10.1016/j.ejphar.2014.06.017
Hirsh, A. J., Yao, S. Y., Young, J. D. & Cheeseman, C. I. (1997). Inhibition of glucose absorption in the rat jejunum: a novel action of alpha-D-glucosidase inhibitors. Gastroenterology, 113, 205-211.
Holland, T. M., Agarwal, P., Wang, Y., Leurgans, S. E., Bennett, D. A., Booth, S. L. & Morris, M. C. (2020). "Dietary flavonols and risk of Alzheimer dementia". Neurology, 94(16), e1749–e1756.
Hughes, J. D., Blagg, J., Price, D. A., Zhang, Y. et al. (2008). Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorganic and Medicinal Chemistry Letter, 18(17), 4872-4875.
Jain, A. N. & Nicholls, A. (2008). Recommendations for evaluation of computational methods. Journal of Computational Aided Molecular Design, 22(34), 133-142.
Jiang, H., Yamashita, Y., Nakamura, A., Croft K. & Ashida, H. (2019). Quercetin and its metabolite isorhamnetin promote glucose uptake through different signalling pathways in myotubes. Scientific Report, 9, 2690. https://doi.org/10.1038/s41598-019-38711-7
Jin-Jing, Z., Jin-Qing, S., Shu-Yi, P. & Kai, W. (2016). Treatment with isorhamnetin protects the brain against ischemic injury in mice. Neurochemistry Research, 41(8), 1939-1948.
Johnson, T. W., Dress, K. R. & Edwards, M. (2009). Using the Golden Triangle to optimize clearance and oral absorption. Bioorganic and Medicinal Chemistry Letter, 19(19), 5560-5564.
Kalai, F. Z., Boulaaba, M., Ferdousi, F. & Isoda, H. (2022). Effects of Isorhamnetin on Diabetes and Its Associated Complications: A Review of In Vitro and In Vivo Studies and a Post Hoc Transcriptome Analysis of Involved Molecular Pathways. Int J Mol Sci., 23(2), 704. https://doi.org/10.3390/ijms23020704
Kandakumar, S. & Manju, V. (2017). Pharmacological Applications of Isorhamnetin: A Short Review. International Journal of Trend in Scientific Research and Development, 1(4), 172- 178. https://doi.org/10.31142/ijtsrd2202.
Kaur, R. & Dogra, N. K. (2014). A review on traditional uses, chemical constituents and pharmacology of Ageratum conyzoides L. (Asteraceae). International Journal of Pharmaceutical and Biological Archive, 5, 33-45.
Kim, S., Thiessen, P.A., Bolton, E.E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B.A., Wang, J., Yu, B., Zhang, J., and Bryant, S.H. (2016). PubChem Substance and Compound databases. Nucleic acids research; 44(D1), D1202-D1213.
Lenzen, S. (2008). The mechanisms of alloxan- and strteptozotocin-induce diabetes. Diabetologia, 51(2), 216-226.
Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advance in Drug Delivery and Review, 46, 3-26 (2001).
Liqing, H., Huan, H., Zhantu, L., Dan, L., Dong, Y. & Ming, H. (2016). Protective effects of isorhamnetin on cardiomyocytes against anoxia/reoxygenation[1]induced injury is mediated by SIRT1. Journal of Cardiovascular Pharmacology, 67, 526-537.
Magnuson, M. A. & Matschinsky, F. M. (2004). "Glucokinase as a glucose sensor: past, present, and future". In Matschinsky, F.M. and Magnuson, M.A. (eds.). Glucokinase and Glycemic Disease: From Basics to Novel Therapeutics (Frontiers in Diabetes). Basel: S. Karger AG (Switzerland). Pp.18-30.
Marilena, A., Janet, A. G., Carlos, M. & Sergio, O.S.S. (2015). Topical anti-inflammatory ffects of isorhamnetin glycosides isolated from Opuntia ficus-indica. BioMed Research International, 2015(1), 847320. https://doi.org/10.1155/2015/847320.
Martin, Y. C. (2005). A Bioavailability Score. Journal of Medicinal Chemistry, 48, 3164-3170.
Meng, C., Xuan-Yu, M., Hong-Xing, Z. & Mihaly, M. (2011). Molecular Docking: A powerful approach for structure-based drug discovery. Current Computational Aided Drug Design, 7(2), 146-157.
Mobley, D. L. & Dill, K. A. (2009). Binding of small-molecule ligands to proteins: ‘‘what you see’’ is not always ‘‘what you get’’. Structure, 17, 489–498.
Morita, H., Deguchi, J., Motegi, Y., Sato, S., Aoyama, C., Takeo, J., et al. (2014). Sodium Glucose Co-transporter 2 (SGLT2) Inhibitors: New among antidiabetic drugs, Cardiovascular Drugs. Therapy, 28, 331-334.
Moura, A. C., Silva, E. L., Fraga, M. C., Wanderley, A. G., Afiatpour, P. & Maia, M. B. (2005). Anti‐inflammatory and chronic toxicity study of the leaves of Ageratum conyzoides L. in rats. Phytomedicine, 12, 138–142.
Muegge, I., Heald, S. L. & Brittelli, D. (2001). Simple selection criteria for drug-like chemical matter. Journal of Medicinal Chemistry, 44, 1841-1846.
Mullard, A. (2014). 2013 FDA drug approvals. Nature Reviews Drug Discovery, 13, 85 –89.
Ngoc Doan, T. N., & Ly Thi, L. (2012). Targeted proteins for diabetes drug design. Advanced Natural Science Nanotechnology, 3, 1-9.
Ozioko, P. C., Muhammed, Y. Y. & Ibrahim, A. (2022). Ageratum conyzoides Methanol Leaf Extract: Phytochemicals with Antidiabetic Potential via Antioxidant Activity. Asian Journal of Biochemistry, 17(1), 15-24. https://doi.org/10.3923/ajb.2022.15.24
Ozioko, P. C., Ibrahim, A., Muhammad, Y. Y., & Bashir, M. (2024). Fractionation and Identification of Phenolic Compounds from Ethylacetate Fraction of Ageratum Conyzoides Methanolic Leaf Extract. International Journal of Emerging Multidisciplinarie: Biomedical and Clinical Research, 2(1), 1-21. https://doi.org/10.54938/ijemdbmcr.2024.02.1.272
Patil, R., Das, S., Stanley, A., Yadav, L., Sudhakar, A. & Varma, A. K. (2010). Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS One. 5(8), e12029. https://doi.org/10.1371/journal.pone.0012029.
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. & Ferrin, T. E. (2004). UCSF chimera: a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605-1612. https://doi.org/10.1002/jcc.20084.
Piero, M. N., Njagi, J. M., Kibiti, C. M., Ngeranwa, J. J. N., Njagi, A. N. M., Njue, W. M., & Gathumbi, P. K. (2012). Herbal management of diabetes mellitus: a rapidly expanding research avenue. International Journal of Current Pharmaceutical Research, 4(2), 1-4.
Rose, Y., Duarte, J. M., Lowe, R., Segura, J., Bi, C., Bhikadiya, C., et al. (2020). RCSB Protein Data Bank: Architectural advances towards integrated searching and efficient access to macromolecular structure data from the PDB archive. Journal of Molecular Biology, 16, 6704.
Shapovalov, M. S. & Dunbrack, R. L. Jr. (2011). A smoothed backbone-dependent rotomer library for proteins derived from adaptive kernel density estimates and regressions. Structure, 19, 844-858.
Stephen S. M. C., Eric, C. M. H., Karen S. L. L. & Sookja, K. C. (2003). Contribution of Polyol Pathway to Diabetes-Induced Oxidative Stress. Journal of American Society of Nephrology, 14, S233–S236.
Tae, H. K., Sae-Kwang, K. & Jong-Sup, B. (2013). Anti-Inflammatory activities of isorhamnetin-3-O[1]galactoside against HMGB1-induced inflammatory responses in both HUVECs and CLP-induced septic mice. Journal of Cellular Biochemistry 114, 336-345. https://doi.org/10.1002/jcb.24361
Trott, O. & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, 31, 455-461.
Valdar, W. S. & Thornton, J. M. (2001). Protein-protein interfaces: analysis of amino acid conservation in homodimers. Proteins, 42, 108-124.
Veber, D. F. Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W. & Kopple K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45, 2615-2623. https://doi.org/10.1021/jm020017n.
Widyawati, T, Yusoff, A. N., Asmawi, Z. M. & Ahmad, M. (2015). Antihyperglycemic effect of methanol extract of Syzygium polyanthum (Wight.) leaf in streptozotocininduced diabetic rats. Nutrients, 7(9), 7764-7780.
Xiong, G. L., Wu, Z. X., Yi, J. C., Fu, L., Yang, Z. J., Hsieh, C. H., et al. (2021). ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucliec Acids Research, 49(W1), W5-W14. PMID:33893803.
Yeon, S. S., Hye, S. B, Kazuo, O. & Kuk, H. (2005). Inhibitory effects of Isorhamnetin-3-O-b - D-glucoside from Salicornia herbacea on rat lens aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissues. Biological and Pharmaceutical Bulletin, 28(5), 916-918. https://doi.org/10.1248/bpb.28.916.
Yun, L., Guibo, S., Xi, D., Min, W., Meng, Q., Yingli, Y. et al. (2015). Isorhamnetin attenuates atherosclerosis by inhibiting macrophage apoptosis via PI3K/ AKT activation and HO-1 induction. PLoS ONE, 10(3), 0120259. https://doi.org/10.1371/journal.pone.0120259