Background: Triploidy induction is widely employed in aquaculture to produce sterile fish, offering potential benefits such as enhanced growth and improved market control. However, induced triploidy is frequently associated with skeletal deformities, which pose a threat to fish welfare and reduce commercial viability. Optimizing induction protocols is essential to mitigate these negative effects.
Methods: Triploidy was induced in fertilized eggs of Schizothorax richardsonii using hydrostatic pressure shocks of 5000, 6000, and 7000 psi, applied for either 3 or 5 minutes at 12 minutes post-fertilization. Ploidy status was verified through cytogenetic analysis. At 75 days post-hatching, vertebral deformities were assessed via morphological examination. Deformity rates were statistically compared across treatment groups and against untreated diploid controls.
Results: The treatment of 5000 psi for 5 minutes produced the highest triploidy induction rate. All triploid groups exhibited significantly higher vertebral deformity rates compared to diploid controls. The maximum recorded deformity rate was 3.5 ± 0.13% in the 7000 psi / 5 minute group, whereas diploid controls showed no deformities (0.0%). Our findings revealed that deformities increased with rising pressure intensity or prolonged exposure.
Conclusion: Triploidy induction in S. richardsonii has significant potential for enhancing aquaculture production, but it also increases the risk of skeletal deformities. These deformities can adversely affect fish survival, marketability, and production costs. To improve the commercial feasibility and ethical standards of triploid fish farming, further research should focus on optimizing induction parameters and investigating alternative methods to minimize deformities.
triploidy, pressure shock, vertebral deformities, Schizothorax richardsonii, aquaculture, fish health
Amoroso, G., Cobcroft, J. M., Adams, M. B., Ventura, T., & Carter, C. G. (2016). Concurrence of lower jaw skeletal anomalies in triploid Atlantic salmon (Salmo salar L.) and the effect on growth in freshwater. Journal of Fish Diseases, 39(12), 1509–1521.
APHA, AWWA, WPCF. (1998). Standard methods for examination of water and wastewater, 20th. Ed., APHA, N. W., Washington D.C.
Bi, S., Lai, H., Wang, G., Guo, D., Liu, S., Chen, X., & Li, G. (2020). Triploidy induction by hydrostatic pressure shock in mandarin fish (Siniperca chuatsi). Aquaculture, 520, 734979.
Boglione, C., Gisbert, E., Gavaia, P., Witten, P. E., Moren, M., Fontagné, S., & Koumoundouros, G. (2013). Skeletal anomalies in reared European fish larvae and juveniles. Part 2: Main typologies, occurrences and causative factors. Reviews in Aquaculture, 5(S1), 121–167.
Felip, A., Piferrer, F., Zanuy, S., & Carrillo, M. (2001). Comparative growth performance of diploid and triploid European sea bass over the first four spawning seasons. Journal of Fish Biology, 58(1), 76–88.
Fjelldal, P. G., Hansen, T. J., Lock, E. J., Wargelius, A., Fraser, T. W. K., Sambraus, F., ElMowafi, A., Albrektsen, S., Waagbø, R., & Ørnsrud, R. (2016). Increased dietary phosphorous prevents vertebral deformities in triploid Atlantic salmon (Salmo salar L.). Aquaculture Nutrition, 22(1), 72–90.
Fjelldal, P. G., Lock, E. J., Grotmol, S., Totland, G. K., Nordgarden, U., Flik, G., & Hansen, T. (2006). Impact of smolt production strategy on vertebral growth and mineralisation during smoltification and the early seawater phase in Atlantic salmon (Salmo salar, L.). Aquaculture, 261, 715–728.
Fraser, T. W., Hansen, T. J., Remø, S. C., Olsen, R. E., & Fjelldal, P. G. (2022). Triploid Atlantic salmon × brown trout hybrids have similar seawater growth and welfare issues as triploid Atlantic salmon, but both were heavier at harvest than their diploid counterparts. Aquaculture, 552, 737975.
Fraser, T. W. K., Fjelldal, P. G., Hansen, T., & Mayer, I. (2012a). Welfare considerations of triploid fish. Reviews in Fisheries Science, 20, 192–211.
Glover, K. A., Harvey, A. C., Hansen, T. J., Fjelldal, P. G., Besnier, F. N., Bos, J. B., & Solberg, M. F. (2020). Chromosome aberrations in pressure-induced triploid Atlantic salmon. BMC Genetics, 21(1), 1–11.
Grotmol, S., Kryvi, H., Nordvik, K., & Totland, G. K. (2003). Notochord segmentation may lay down the pathway for the development of the vertebral bodies in the Atlantic salmon. Anatomy and Embryology, 207, 263–272.
Hliwa, P., Panasiak, L., Ziomek, E., Rożyński, R., Leonowicz, Ł., Grudniewska, J., & Ocalewicz, K. (2022). Application of high hydrostatic pressure (HHP) shock to induce triploid development in the European grayling (Thymallus thymallus L.). Animal Reproduction Science, 237, 106929.
Howell, W. T., & Black, D. A. (1980). Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: A 1-step method. Experientia, 36(8), 1014–1015.
Hussain, M. G., Chatterji, A., McAndrew, B. J., & Johnstone, R. (1991). Triploidy induction in Nile tilapia, Oreochromis niloticus L. using pressure, heat and cold shocks. Theoretical and Applied Genetics, 81, 6–12.
Jhingran, V. G. (1982). Fish and fisheries of India. Hindustan Publishing Corporation, India.
Káldy, J., Patakiné Várkonyi, E., Fazekas, G. L., Nagy, Z., Sándor, Z. J., Bogár, K., & Ljubobratović, U. (2021). Effects of hydrostatic pressure treatment of newly fertilized eggs on the ploidy level and karyotype of pikeperch Sander lucioperca (Linnaeus, 1758). Life, 11(12), 1296.
Kamalam, B. S., Mahija, J., Baral, P., Pandey, A., Akhtar, M. S., Ciji, A., & Rajesh, M. (2019). Temperature and oxygen related ecophysiological traits of snow trout (Schizothorax richardsonii) are sensitive to seasonal changes in a Himalayan stream environment. Journal of Thermal Biology, 83, 22–29.
Kim, H. S., Chung, K. H., & Son, J. H. (2017). Comparison of different ploidy detection methods in Oncorhynchus mykiss, the rainbow trout. Fisheries and Aquatic Sciences, 20(1), 1–7.
Meng, Q., Bao, Z., Wang, Z., Wang, S., Hu, J., Hu, X., & Huang, X. (2012). Growth and reproductive performance of triploid yesso scallops (Patinopecten yessoensis) induced by hypotonic shock. Journal of Shellfish Research, 31(4), 1113–1122.
Mirza, M. R. (1991). A contribution to the systematics of the Schizothoracine fishes (Pisces: Cyprinidae) with the description of three new tribes. Pakistan Journal of Zoology, 23, 339–341.
Nascimento, N. F., Bertolini, R. M., Lopez, L. S., Nakaghi, L. S. O., Monzani, P. S., Senhorini, J. A., & Yasui, G. S. (2021). Heat-induced triploids in Brycon amazonicus: A strategic fish species for aquaculture and conservation. Zygote, 29(5), 372–376.
Neiman, M., Kay, A. D., & Krist, A. C. (2012). Sensitivity to phosphorus limitation increases with ploidy level in a New Zealand snail. Evolution, 67(5), 1511–1517.
Peruzzi, S., & Chatain, B. (2000). Pressure and cold shock induction of meiotic gynogenesis and triploidy in the European sea bass, Dicentrarchus labrax L.: Relative efficiency of methods and parental variability. Aquaculture, 189(1–2), 23–37.
Pradhan, B. R. (1982). Preliminary studies of Syarpu Daha—A mid-hill lake in Rukum District, Nepal. Proceedings of National Science Technology Congress, Kathmandu, 261–264.
Preston, A. C., Taylor, J. F., Craig, B., Bozzolla, P., Penman, D. J., & Migaud, H. (2013). Optimisation of triploidy induction in brown trout (Salmo trutta L.). Aquaculture, 414, 160–166.
Rozy, A. A., Othman, R., Ahmad, D. B., & Ghani, I. F. A. (2022). Heat shock treatments for polyploid induction in Clarias gariepinus: Different time after fertilization and treatment duration. In IOP Conference Series: Earth and Environmental Science (Vol. 1119, No. 1, p. 012047). IOP Publishing.
Sambraus, F., Hansen, T., Daae, B. S., Thorsen, A., Sandvik, R., & Fjelldal, P. G. (2020). Triploid Atlantic salmon Salmo salar have a higher dietary phosphorus requirement for bone mineralization during early development. Journal of Fish Biology, 97(1), 137–147.
Sato, L. S., Jorge, P. H., Mastrochirico-Filho, V. A., Hata, M. E., Batlouni, S. R., Kuradomi, R. Y., & Hashimoto, D. T. (2020). Triploidy in tambaqui Colossoma macropomum identified by chromosomes of fish larvae. Journal of Aquaculture & Marine Biology, 9(3), 65–69.
Silva J. G., Copatti, C. E., Costa, L., Souza, G., Bonfá, H. C., & Melo, J. F. (2022). Triploidy induction in tambaqui (Colossoma macropomum) using thermal shock: Fertilization, survival and growth performance from early larval to the juvenile stage. Journal of Applied Aquaculture, 34(4), 989–1004.
Tave, D. (1990). Chromosomal manipulation. Aquaculture Magazine, 16(1), 62–65.
Taylor, J. F., Leclercq, E., Preston, A. C., Guy, D., & Migaud, H. (2012). Parr-smolt transformation in out-of-season triploid Atlantic salmon (Salmo salar L.). Aquaculture, 362–363, 255–263.
Teskeredžić, E., Donaldson, E. M., Teskeredžić, Z., Solar, I. I., & McLean, E. (1993). Comparison of hydrostatic pressure and thermal shocks to induce triploidy in coho salmon (Oncorhynchus kisutch). Aquaculture, 117(1–2), 47–55.
Tiwary, B. K., Kirubagaran, R., & Ray, A. K. (2004). The biology of triploid fish. Reviews in Fish Biology and Fisheries, 14, 391–402.
Vasconcelos, L. M., Farias, R., Guimarães, I. M., Santos, A. J. G., Andrade, H. A., & Coimbra, M. R. M. (2022). Triploidy induction by cold shock in curimba (Prochilodus argenteus). Journal of Applied Ichthyology, 38(2), 247–251.
Wargelius, A., Fjelldal, P. G., & Hansen, T. (2005). Heat shock during early somitogenesis induces caudal vertebral column defects in Atlantic salmon (Salmo salar). Development Genes and Evolution, 215, 350–357.
Weber, G. M., Hostuttler, M. A., Cleveland, B. M., & Leeds, T. D. (2014). Growth performance comparison of intercross-triploid induced triploid and diploid rainbow trout. Aquaculture, 433, 85–93.
Whitt, G. S., Cho, P. L., & Childers, W. F. (1972). Preferential inhibition of allelic isozyme synthesis in an interspecific sunfish hybrid. Journal of Experimental Zoology, 179, 271–282.
Zheng, G., Li, B., Yang, H., Su, X., Jia, C., Xu, W., & Zou, S. (2023). Induction of high triploid rate blunt snout bream (Megalobrama amblycephala) by hydrostatic pressure and analysis of gonadal sterility mechanism. Aquaculture, 563, 738983.
Zúñiga-Panduro, M. D. J., Casillas-Hernández, R., Garza-Torres, R., Guerrero-Tortolero, D. A., Grijalva-Chon, J. M., & Campos-Ramos, R. (2014). Abnormalities and possible mosaicism during embryonic cell division after cold shock in zygotes of the Pacific white shrimp, Litopenaeus vannamei, related to failure of induction of tetraploidy and triploidy. Journal of Crustacean Biology, 34(3), 367–376.