Cold plasma (CP) is an advanced, non-thermal plasma processing technology with significant potential for preserving fruits and fruit juices. Recent research shows that CP processing has attracted attention in fruit processing and storage. The inactivation of microorganisms and extended shelf life of fruits by CP treatment is influenced by several factors, including the type of plasma reactor, discharge power, treatment time, and the inert gas used. This review highlights how CP can effectively extend the shelf life of fruits, eliminate harmful bacteria and maintain the nutrients, flavour, and colour of the fruits and fruit juices. Unlike conventional high-temperature treatments, CP uses low temperatures to keep fruits fresh and safe without causing damage to quality. Additionally, the study describes various plasma systems, their principles of operation, and their applications in the fruit processing industry. Overall, non-thermal plasma demonstrates significant potential in ensuring the safety and freshness of fruits and fruit juices while meeting consumer demands for high-quality products.
cold plasma, plasma reactor, self life, quality, preservation, fruit juices
Almeida, F. D. L., Cavalcante, R. S., Cullen, P. J., Frias, J. M., Bourke, P., Fernandes, F. A. N., & Rodrigues, S. (2015). Effects of atmospheric cold plasma and ozone on prebiotic orange juice. Innovative Food Science & Emerging Technologies, 32, 127–135. https://doi.org/10.1016/j.ifset.2015.09.001
Bursać Kovačević, D., Putnik, P., Dragović-Uzelac, V., Pedisić, S., Režek Jambrak, A., & Herceg, Z. (2016). Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chemistry, 190, 317–323. https://doi.org/10.1016/j.foodchem.2015.05.099
Chizoba Ekezie, F.-G., Cheng, J.-H., & Sun, D.-W. (2018). Effects of Mild Oxidative and Structural Modifications Induced by Argon Plasma on Physicochemical Properties of Actomyosin from King Prawn ( Litopenaeus vannamei ). Journal of Agricultural and Food Chemistry, 66(50), 13285–13294. https://doi.org/10.1021/acs.jafc.8b05178
Conrads, H., & Schmidt, M. (2000). Plasma generation and plasma sources. Plasma Sources Science and Technology, 9(4), 441–454. https://doi.org/10.1088/0963-0252/9/4/301
Herceg, Z., Kovačević, D. B., Kljusurić, J. G., Jambrak, A. R., Zorić, Z., & Dragović-Uzelac, V. (2016). Gas phase plasma impact on phenolic compounds in pomegranate juice. Food Chemistry, 190, 665–672. https://doi.org/10.1016/j.foodchem.2015.05.135
Kong, M. G., & Xu Tao Deng. (2003). Electrically efficient production of a diffuse nonthermal atmospheric plasma. IEEE Transactions on Plasma Science, 31(1), 7–18. https://doi.org/10.1109/TPS.2003.808884
Lacombe, A., Niemira, B. A., Gurtler, J. B., Fan, X., Sites, J., Boyd, G., & Chen, H. (2015). Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiology, 46, 479–484. https://doi.org/10.1016/j.fm.2014.09.010
Min, Z., Li, R., Chen, L., Zhang, Y., Li, Z., Liu, M., Ju, Y., & Fang, Y. (2019). Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiology and Biochemistry, 135, 99–110. https://doi.org/10.1016/j.plaphy.2018.11.037
Misra, N. N., Moiseev, T., Patil, S., Pankaj, S. K., Bourke, P., Mosnier, J. P., Keener, K. M., & Cullen, P. J. (2014). Cold Plasma in Modified Atmospheres for Post-harvest Treatment of Strawberries. Food and Bioprocess Technology, 7(10), 3045–3054. https://doi.org/10.1007/s11947-014-1356-0
Misra, N. N., Tiwari, B. K., Raghavarao, K. S. M. S., & Cullen, P. J. (2011). Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Engineering Reviews, 3(3–4), 159–170. https://doi.org/10.1007/s12393-011-9041-9
Misra, N. N., Pankaj, S. K., Walsh, T., O’Regan, F., Bourke, P., & Cullen, P. J. (2014). In-package nonthermal plasma degradation of pesticides on fresh produce. Journal of Hazardous Materials, 271, 33–40. https://doi.org/10.1016/j.jhazmat.2014.02.005
Misra, N. N., Kaur, S., Tiwari, B. K., Kaur, A., Singh, N., & Cullen, P. J. (2015). Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocolloids, 44, 115–121. https://doi.org/10.1016/j.foodhyd.2014.08.019
Misra, N. N., Pankaj, S. K., Segat, A., & Ishikawa, K. (2016). Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science & Technology, 55, 39–47. https://doi.org/10.1016/j.tifs.2016.07.001
Niemira, B. A. (2012). Cold Plasma Decontamination of Foods. Annual Review of Food Science and Technology, 3(1), 125–142. https://doi.org/10.1146/annurev-food-022811-101132
Pankaj, S. K., Wan, Z., Colonna, W., & Keener, K. M. (2017). Effect of high voltage atmospheric cold plasma on white grape juice quality. Journal of the Science of Food and Agriculture, 97(12), 4016–4021. https://doi.org/10.1002/jsfa.8268
Pankaj, S., Wan, Z., & Keener, K. (2018). Effects of Cold Plasma on Food Quality: A Review. Foods, 7(1), 4. https://doi.org/10.3390/foods7010004
Panklai, T., Kumchaiseemak, N., Seelarat, W., Sangwanna, S., Chutimayanaphat, C., Bootchanont, A., Wattanawikkam, C., Rittidach, T., Boonyawan, D., & Porjai, P. (2025). Investigating effects of air-cold plasma jet on enzymatic activity and nutritional quality attributes of Mangosteen (Garcinia mangostana L.) juice. Innovative Food Science & Emerging Technologies, 99, 103878. https://doi.org/10.1016/j.ifset.2024.103878
Park, H. S., Yang, J., Choi, H. J., & Kim, K. H. (2017). Effective Thermal Inactivation of the Spores of Bacillus cereus Biofilms Using Microwave. Journal of Microbiology and Biotechnology, 27(7), 1209–1215. https://doi.org/10.4014/jmb.1702.02009
Ramazzina, I., Berardinelli, A., Rizzi, F., Tappi, S., Ragni, L., Sacchetti, G., & Rocculi, P. (2015). Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biology and Technology, 107, 55–65. https://doi.org/10.1016/j.postharvbio.2015.04.008
Rodríguez, Ó., Gomes, W. F., Rodrigues, S., & Fernandes, F. A. N. (2017). Effect of indirect cold plasma treatment on cashew apple juice (Anacardium occidentale L.). LWT, 84, 457–463. https://doi.org/10.1016/j.lwt.2017.06.010
Rossi, F., Kylián, O., Rauscher, H., Hasiwa, M., & Gilliland, D. (2009). Low pressure plasma discharges for the sterilization and decontamination of surfaces. New Journal of Physics, 11(11), 115017. https://doi.org/10.1088/1367-2630/11/11/115017
Sarangapani, C., Misra, N. N., Milosavljevic, V., Bourke, P., O’Regan, F., & Cullen, P. J. (2016). Pesticide degradation in water using atmospheric air cold plasma. Journal of Water Process Engineering, 9, 225–232. https://doi.org/10.1016/j.jwpe.2016.01.003
Song, A. Y., Oh, Y. J., Kim, J. E., Song, K. Bin, Oh, D. H., & Min, S. C. (2015). Cold plasma treatment for microbial safety and preservation of fresh lettuce. Food Science and Biotechnology, 24(5), 1717–1724. https://doi.org/10.1007/s10068-015-0223-8
Tappi, S., Gozzi, G., Vannini, L., Berardinelli, A., Romani, S., Ragni, L., & Rocculi, P. (2016). Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science & Emerging Technologies, 33, 225–233. https://doi.org/10.1016/j.ifset.2015.12.022
Wang, R. X., Nian, W. F., Wu, H. Y., Feng, H. Q., Zhang, K., Zhang, J., Zhu, W. D., Becker, K. H., & Fang, J. (2012). Atmospheric-pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: inactivation and physiochemical properties evaluation. The European Physical Journal D, 66(10), 276. https://doi.org/10.1140/epjd/e2012-30053-1
Wang, X., Hou, M., Liu, T., Ren, J., Li, H., Yang, H., Hu, Z., & Gao, Z. (2025). Continuous cold plasma reactor for the processing of NFC apple juice: Effect on quality control and preservation stability. Innovative Food Science & Emerging Technologies, 100, 103905. https://doi.org/10.1016/j.ifset.2024.103905
Xu, L., Garner, A. L., Tao, B., & Keener, K. M. (2017). Microbial Inactivation and Quality Changes in Orange Juice Treated by High Voltage Atmospheric Cold Plasma. Food and Bioprocess Technology, 10(10), 1778–1791. https://doi.org/10.1007/s11947-017-1947-7
Ziuzina, D., Han, L., Cullen, P. J., & Bourke, P. (2015). Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenes and Escherichia coli. International Journal of Food Microbiology, 210, 53–61. https://doi.org/10.1016/j.ijfoodmicro.2015.05.019