Cornous Biology | Volume 4 Issue 1 | Pages: 18-26 | Doi : 10.37446/corbio/rsa/4.1.2026.18-26
Research Article
OPEN ACCESS | Published on : 12-Feb-2026

A Comparative approach to the effects of aqueous leaf and root extracts of Moringa oleifera on selected biochemical, haematological, and gut microbiota parameters of alloxan-induced diabetic Wistar rats


    Austin Achinike Okwelle
  • Department of Biology, Faculty of Natural and Applied Sciences, Ignatius Ajuru University of Education, Rumuolumeni, Port Harcourt, Rivers State, Nigeria.

  • Gogo James Owo
  • Department of Biology, Faculty of Natural and Applied Sciences, Ignatius Ajuru University of Education, Rumuolumeni, Port Harcourt, Rivers State, Nigeria.

  • Enyohwo Dennis Kpomah
  • Department of Biochemistry, Faculty of Science, Federal University, Otuoke, Bayelsa State, Nigeria.

Abstract

Background: Diabetes mellitus is one of the metabolic diseases known all over the world. This syndrome features symptoms like hyperglycaemia, oxidative stress, and associated organ dysfunctions. Moringa oleifera is a commonly known medicinal plant explored by many for its healing activities. This study seeks to find out the comparative effects of the aqueous root and leaf extracts of M. oleifera on some biochemical, haematological, and gut microbiota parameters in alloxan-induced diabetic Wistar rats.

Methods: About thirty-six (36) adult Wistar rats were used in the study. These rats were randomly divided into six (6) groups, viz the normal control, diabetic control, diabetic treated with leaf extract, diabetic treated with root extract, diabetic treated with both leaf and root extracts, and diabetic treated with metformin, the standard drug. 150 mg/kg body weight of alloxan monohydrate was intraperitoneally given to the rats to induce diabetes. The experimental rats were exposed to treatments orally for 21 days. The study adopted standard methods for the estimation of the biochemical and haematological parameters, including fasting blood glucose, lipid profile, liver enzyme activities. Faecal sampling and culture-based methods were used to estimate the gut microbiota composition.

Results: The results of the study show that both the extracts from the leaves and roots of M. oleifera lowered blood glucose levels and lipid profile status at p < 0.05 level of significance. Similarly, the haematological and antioxidant parameters were normalised compared with diabetic controls, with the leaf extract exhibiting moderately higher potency. The results of the gut microbiota analysis showed that both the leaf and root extracts of M. oleifera exerted the modulation of bacterial diversity, reduction of pathogenic taxa and enrichment of beneficial commensals, with the combined extract showing synergistic effects.

Conclusion: The findings revealed that the leaf and root extracts of M. oleifera exert potent blood-sugar lowering and microbiota-modulating effects, hence support their use as a complementary therapeutic agent for the management of diabetes mellitus.

Keywords

Moringa oleifera, diabetes mellitus, biochemical parameters, haematological parameters, gut microbiota

References

  • Abhang, P., Satape, R. A., & Masurkar, S. (2024). Phytochemical screening, antioxidant, and antimicrobial activities of Moringa oleifera extracts. Bulletin of Pure and Applied Sciences: Zoology (Animal Science), 43B(1s), 618–629.

    Adekanmi, A. A., Adekanmi, S. A., & Adekanmi, O. S. (2020). Qualitative and quantitative phytochemical constituents of moringa leaf. International Journal of Engineering and Information Systems4(5), 10-17.

    Afiaenyi, C. I., Ngwu, K. E., Okafor, M. A., & Ayogu, R. N. (2023). Effects of Moringa oleifera leaves on blood glucose, blood pressure, and lipid profile of type 2 diabetic subjects: A parallel-group randomized clinical trial of efficacy. Nutrition and Health, 31(1), 281–291.

    Ajugwo, A. O., Mounbegna, P. E., Kemajou, T. S., & Ofokansi, V. C. (2017). Effects of Moringa oleifera leaf extract on haematological parameters of phenylhydrazine-induced anaemia in Wistar rats. International Journal of Public Health and Safety, 2(4), 139.

    Alam, S., Sarker, M. M. R., Sultana, T. N., Chowdhury, M. N. R., Rashid, M. A., Chaity, N. I., ... & Mohamed, I. N. (2022). Antidiabetic phytochemicals from medicinal plants: prospective candidates for new drug discovery and development. Frontiers in endocrinology13, 800714.

    Algheshairy, R. M., Alharbi, H. F., Almujaydil, M. S., Alhomaid, R. M., & Ali, H. A. (2025). The protective effect of various forms of Nigella sativa against hepatorenal dysfunction: Underlying mechanisms comprise antioxidation, anti-inflammation, and anti-apoptosis. Frontiers in Nutrition12, 1553215.

    Bielka, W., Przezak, A., & Pawlik, A. (2022). The role of the gut microbiota in the pathogenesis of diabetes. International journal of molecular sciences, 23(1), 480.

    Blahova, J., Martiniakova, M., Babikova, M., Kovacova, V., Mondockova, V., & Omelka, R. (2021). Pharmaceutical drugs and natural therapeutic products for the treatment of type 2 diabetes mellitus. Pharmaceuticals14(8), 806.

    Bouyahya, A., Chamkhi, I., Balahbib, A., Rebezov, M., Shariati, M. A., Wilairatana, P., ... & El Omari, N. (2022). Mechanisms, anti-quorum-sensing actions, and clinical trials of medicinal plant bioactive compounds against bacteria: A comprehensive review. Molecules27(5), 1484.

    Chen, X., Pan, S., Li, F., Xu, X., & Xing, H. (2022). Plant-derived bioactive compounds and potential health benefits: Involvement of the gut microbiota and its metabolic activity. Biomolecules12(12), 1871.

    Chen, X., Xie, N., Feng, L., Huang, Y., Wu, Y., Zhu, H., ... & Zhang, Y. (2025). Oxidative stress in diabetes mellitus and its complications: From pathophysiology to therapeutic strategies. Chinese Medical Journal138(1), 15-27.

    Dai, H., Han, J., Wang, T., Yin, W. B., Chen, Y., & Liu, H. (2023). Recent advances in gut microbiota-associated natural products: structures, bioactivities, and mechanisms. Natural product reports40(6), 1078-1093.

    de Oliveira Junior, P. C., de Moraez, D. F., & Oliveira, C. R. (2024). Exploring the therapeutic effects of Moringa oleifera on inflammation and chronic diseases. Brazilian Journal of Development10(9), e72477-e72477.

    Di Vincenzo, F., Del Gaudio, A., Petito, V., Lopetuso, L. R., & Scaldaferri, F. (2024). Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review. Internal and emergency medicine19(2), 275-293.

    Elbermawi, A., Darwish, M. S., Zaki, A. A., Abou-Zeid, N. A., Taher, M. A., Khojah, E., ... & Soliman, A. F. (2022). In vitro antidiabetic, antioxidant, and prebiotic activities of the chemical compounds isolated from Guizotia abyssinica. Antioxidants, 11(12), 2482.

    García-Carrasco, B., Fernandez-Dacosta, R., Dávalos, A., Ordovás, J. M., & Rodriguez-Casado, A. (2015). In vitro hypolipidemic and antioxidant effects of leaf and root extracts of Taraxacum officinaleMedical Sciences3(2), 38-54. https://doi.org/10.3390/medsci3020038.

    Ghosh, S. S., Wang, J., Yannie, P. J., & Ghosh, S. (2020). Intestinal barrier dysfunction, LPS translocation, and disease development. Journal of the Endocrine Society4(2), bvz039.

    Gradisteanu Pircalabioru, G., Corcionivoschi, N., Gundogdu, O., Chifiriuc, M. C., Marutescu, L. G., Ispas, B., & Savu, O. (2021). Dysbiosis in the development of type I diabetes and associated complications: From mechanisms to targeted gut microbes manipulation therapies. International Journal of Molecular Sciences, 22(5), 2763.

    Harsch, I. A., & Konturek, P. C. (2018). The role of gut microbiota in obesity and type 2 and type 1 diabetes mellitus: New insights into “old” diseases. Medical Sciences, 6(2), 32.

    He, J., Zhang, P., Shen, L., Niu, L., Tan, Y., Chen, L., ... & Zhu, L. (2020). Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. International journal of molecular sciences, 21(17), 6356.

    Husien, H. M., Rehman, S. U., Duan, Z., & Wang, M. (2024). Effect of Moringa oleifera leaf polysaccharide on the composition of intestinal microbiota in mice with dextran sulfate sodium-induced ulcerative colitis. Frontiers in Nutrition11, 1409026.

    Kumar, M., Muthurayar, T., Karthika, S., Gayathri, S., Varalakshmi, P., & Ashokkumar, B. (2025). Anti-diabetic potentials of Lactobacillus Strains by Modulating Gut Microbiota Structure and β-cell Regeneration in the Pancreatic Islets of Alloxan-Induced Diabetic Rats. Probiotics and Antimicrobial Proteins, 17(3), 1096–1116.

    Kustyawati, M. E., Fadhallah, E. G., Hidayati, S., Pramesti, A., & Hidayat, L. (2024). The potential of oil palm mesocarp fiber waste as a prebiotic material: Chemical and microbial evaluation using probiotic Saccharomyces cerevisiae, Lactobacillus casei, and Escherichia coli. Ecological Engineering & Environmental Technology, 25.

    Mthiyane, F. T., Dludla, P. V., Ziqubu, K., Mthembu, S. X., Muvhulawa, N., Hlengwa, N., … Mazibuko-Mbeje, S. E. (2022). A review on the antidiabetic properties of Moringa oleifera extracts: Focusing on oxidative stress and inflammation as main therapeutic targets. Frontiers in Pharmacology, 13, 940572.

    Nova, E., Redondo-Useros, N., Martínez-García, R. M., Gómez-Martínez, S., Díaz-Prieto, L. E., & Marcos, A. (2020). Potential of Moringa oleifera to improve glucose control for the prevention of diabetes and related metabolic alterations: A systematic review of animal and human studies. Nutrients, 12(7), 2050.

    Nurhayati, T., Fathoni, M. I., Fatimah, S. N., Tarawan, V. M., Goenawan, H., & Dwiwina, R. G. (2023). Effect of Moringa oleifera Leaf Powder on Hematological Profile of Male Wistar Rats. Journal of blood medicine, 14, 477–485. https://doi.org/10.2147/JBM.S407884.

    Nurudhin, A., Widyastuti, R., Prabowo, N. A., Adnan, Z. A., & Werdiningsih, Y. (2021). The effect of Moringa oleifera leaf extract on mean platelet volume and neutrophil-to-lymphocyte ratio in lupus. Bangladesh Journal of Medical Science, 20(1), 68–73.

    Owo, G. J., & Beresford, S. J. (2020). Blood sugar–lowering potentials of aqueous and ethanol extracts of a mixture of rinds of Citrullus vulgaris Schrad. (watermelon) and Chrysophyllum albidum G. (udara) fruits in alloxan-induced diabetic Wistar rats. Journal of Pharmaceutical Research International, 32, 86–90.

    Owo, G. J., Okari, K. A., & Kpomah, E. D. (2025). Flavonoid-to-phenol ratios in methanolic extracts of Aspilia africana: Implications for managing oxidative stress. Asian Basic and Applied Research Journal, 7(1), 25–33.

    Saini, T., Sharma, S., Dash, K. K., Sandhu, R., Dadwal, V., Shams, R., & Pandey, V. K. (2025). Role of bioactive phytochemicals in plant seeds and leaves for diabetes control and prevention: A comprehensive review. Phytochemistry Reviews, 1–26.

    Sarkar, M., Bhowmick, S., Hussain, J., Hasan, M., & Hossain, S. (2025). Hot water extract of Moringa oleifera leaves protects erythrocytes from hemolysis and major organs from oxidative stress in vitro. Journal of Basic and Applied Research in Biomedicine3(3), 120-126.

    Shivangini, P., Mona, K., & Nisha, P. (2022). Comprehensive Review: Miracle Tree Moringa oleifera Lam. Current Nutrition & Food Science18(2), 166-180.

    Vinelli, V., Biscotti, P., Martini, D., Del Bo’, C., Marino, M., Meroño, T., ... & Riso, P. (2022). Effects of dietary fibers on short-chain fatty acids and gut microbiota composition in healthy adults: A systematic review. Nutrients, 14(13), 2559.

    Wang, M., Wichienchot, S., He, X., Fu, X., Huang, Q., & Zhang, B. (2019). In vitro colonic fermentation of dietary fibers: Fermentation rate, short-chain fatty acid production and changes in microbiota. Trends in food science & technology88, 1-9.

    Wang, Q., Huang, H., Yang, Y., Yang, X., Li, X., Zhong, W., ... & Li, J. (2024). Reinventing gut health: Leveraging dietary bioactive compounds for the prevention and treatment of diseases. Frontiers in Nutrition11, 1491821.

    Williams, A., Bissinger, R., Shamaa, H., Patel, S., Bourne, L., Artunc, F., & Qadri, S. M. (2023). Pathophysiology of red blood cell dysfunction in diabetes and its complications. Pathophysiology30(3), 327-345.

    Yameny, A. A. (2024). Diabetes mellitus overview 2024. Journal of Bioscience and Applied Research, 10(3), 641–645.