Cornous Biology, Volume 3, Issue 2 : 1-10. Doi : 10.37446/corbio/ra/3.2.2025.1-10
Review Article

OPEN ACCESS | Published on : 30-Jun-2025

A systematic review on arsenic toxicity and its impacts on fish species

  • Prisha Sharma
  • Department of Animal Sciences, Central University of Himachal Pradesh, India.
  • Priya Ranot
  • Department of Animal Sciences, Central University of Himachal Pradesh, India.
  • Mansi Raingnia
  • Department of Animal Sciences, Central University of Himachal Pradesh, India.
  • Amit Kumar Sharma
  • Department of Animal Sciences, Central University of Himachal Pradesh, India.

Abstract

Arsenic is found globally in both freshwater and marine ecosystems, posing a threat to aquatic life. It exists in organic and inorganic forms, with the inorganic variant being more toxic. While most water bodies contain inorganic arsenic, organic forms are often prevalent in fish. Both natural and human activities contribute to arsenic contamination in water. The bioaccumulation of arsenic and its transfer through the aquatic food chain highlight its significance as an environmental concern. Prolonged exposure to low levels of arsenic in fish can lead to accumulation, impacting higher trophic levels, including larger fish and humans who consume them. This review aims to enhance our understanding of arsenic sources, its bioaccumulation, food chain transfer, and effects on fish health. It underscores the urgent need to tackle arsenic contamination in water bodies to protect aquatic ecosystems and the well-being of wildlife and human populations reliant on these resources.

Keywords

arsenic, fish health, bioaccumulation, biotransformation, arsenic speciation

References

  • Aamir, S. (2020). Heavy metals (Cadmium, Mercury and Arsenic) accumulation in different organs of Sperata sarwari collected from Indus River, Head Taunsa, Dera Ghazi Khan, Punjab, Pakistan. Pure and Applied Biology9(2). https://doi.org/10.19045/bspab.2020.90153

    Ahmed, M. K., Habibullah-Al-Mamun, M., Parvin, E., Akter, M. S., & Khan, M. S. (2013). Arsenic induced toxicity and histopathological changes in gill and liver tissue of freshwater fish, tilapia (Oreochromis mossambicus). Experimental and Toxicologic Pathology65(6), 903–909. https://doi.org/10.1016/j.etp.2013.01.003

    Ali, M. M., Ali, M. L., Rakib, M. R. J., Islam, M. S., Habib, A., Hossen, S., Ibrahim, K. A., Idris, A. M., & Phoungthong, K. (2021). Contamination and ecological risk assessment of heavy metals in water and sediment from hubs of fish resource river in a developing country. Toxin Reviews41(4), 1253-1268. https://doi.org/10.1080/15569543.2021.2001829

    Alonso, D. L., Pérez, R., Okio, C. K., & Castillo, E. (2020). Assessment of mining activity on arsenic contamination in surface water and sediments in southwestern area of Santurbán paramo, Colombia. Journal of Environmental Management264, 110478. https://doi.org/10.1016/j.jenvman.2020.110478

    Altikat, S., Uysal, K., Kuru, H. I., Kavasoglu, M., Ozturk, G. N., & Kucuk, A. (2014). The effect of arsenic on some antioxidant enzyme activities and lipid peroxidation in various tissues of mirror carp (Cyprinus carpio carpio). Environmental Science and Pollution Research22(5), 3212–3218. https://doi.org/10.1007/s11356-014-2896-6

    Ardini, F., Dan, G., & Grotti, M. (2019). Arsenic speciation analysis of environmental samples. Journal of Analytical Atomic Spectrometry35(2), 215–237. https://doi.org/10.1039/c9ja00333a

    Babich, R., & Van Beneden, R. J. (2019). Effect of arsenic exposure on early eye development in zebrafish (Danio rerio). Journal of Applied Toxicology39(6), 824–831. https://doi.org/10.1002/jat.3770

    Bia, G., Borgnino, L., Gaiero, D., & García, M. (2014). Arsenic-bearing phases in South Andean volcanic ashes: Implications for As mobility in aquatic environments. Chemical Geology393–394, 26–35. https://doi.org/10.1016/j.chemgeo.2014.10.007

    Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691

    Bundschuh, J., Armienta, M. A., Morales-Simfors, N., Alam, M. A., López, D. L., Quezada, V. D., Dietrich, S., Schneider, J., Tapia, J., Sracek, O., Castillo, E., Parra, L. M., Espinoza, M. A., Guilherme, L. R. G., Sosa, N. N., Niazi, N. K., Tomaszewska, B., Allende, K. L., Bieger, K., . . . Ahmad, A. (2020). Arsenic in Latin America: New findings on source, mobilization and mobility in human environments in 20 countries based on decadal research 2010-2020. Critical Reviews in Environmental Science and Technology51(16), 1727-1865. https://doi.org/10.1080/10643389.2020.1770527

    Byeon, E., Kang, H., Yoon, C., & Lee, J. (2021). Toxicity mechanisms of arsenic compounds in aquatic organisms. Aquatic Toxicology237, 105901. https://doi.org/10.1016/j.aquatox.2021.105901

    Camacho, J., De Conti, A., Pogribny, I. P., Sprando, R. L., & Hunt, P. R. (2022). Assessment of the effects of organic vs. inorganic arsenic and mercury in Caenorhabditis elegansCurrent Research in Toxicology3, 100071. https://doi.org/10.1016/j.crtox.2022.100071

    Canivet, V., Chambon, P., & Gibert, J. (2001). Toxicity and bioaccumulation of arsenic and chromium in epigean and hypogean freshwater macroinvertebrates. Archives of Environmental Contamination and Toxicology40(3), 345–354. https://doi.org/10.1007/s002440010182

    Celino, F. T., Yamaguchi, S., Miura, C., & Miura, T. (2009). Arsenic inhibits in vitro spermatogenesis and induces germ cell apoptosis in Japanese eel (Anguilla japonica). Reproduction138(2), 279–287. https://doi.org/10.1530/rep-09-0167

    Chandel, M., Sharma, A. K., Thakur, K., Sharma, D., Brar, B., Mahajan, D., Kumari, H., Pankaj, P. P., & Kumar, R. (2024). Poison in the water: Arsenic’s silent assault on fish health. Journal of Applied Toxicology44(9), 1282–1301. https://doi.org/10.1002/jat.4581

    Chételat, J., Cott, P. A., Rosabal, M., Houben, A., McClelland, C., Rose, E. B., & Amyot, M. (2019). Arsenic bioaccumulation in subarctic fishes of a mine-impacted bay on Great Slave Lake, Northwest Territories, Canada. PLoS ONE14(8), e0221361. https://doi.org/10.1371/journal.pone.0221361

    D’Amico, A. R., Gibson, A. W., & Bain, L. J. (2013). Embryonic arsenic exposure reduces the number of muscle fibers in killifish (Fundulus heteroclitus). Aquatic Toxicology146, 196–204. https://doi.org/10.1016/j.aquatox.2013.11.010

    Ganie, S. Y., Javaid, D., Hajam, Y. A., & Reshi, M. S. (2023). Arsenic toxicity: sources, pathophysiology and mechanism. Toxicology Research13(1). https://doi.org/10.1093/toxres/tfad111

    Garai, P., Banerjee, P., Mondal, P., Ch, N., & Saha, R. (2021). Effect of heavy metals on fishes: toxicity and bioaccumulation. Journal of Clinical Toxicology, 1–10. 

    Gaworecki, K. M., Chapman, R. W., Neely, M. G., D’Amico, A. R., & Bain, L. J. (2011). Arsenic exposure to killifish during embryogenesis alters muscle development. Toxicological Sciences125(2), 522–531. https://doi.org/10.1093/toxsci/kfr302

    Greani, S., Lourkisti, R., Berti, L., Marchand, B., Giannettini, J., Santini, J., & Quilichini, Y. (2017). Effect of chronic arsenic exposure under environmental conditions on bioaccumulation, oxidative stress, and antioxidant enzymatic defenses in wild trout Salmo trutta (Pisces, Teleostei). Ecotoxicology26(7), 930–941. https://doi.org/10.1007/s10646-017-1822-3

    Guardiola, F., Gónzalez-Párraga, M., Cuesta, A., Meseguer, J., Martínez, S., Martínez-Sánchez, M., Pérez-Sirvent, C., & Esteban, M. (2013). Immunotoxicological effects of inorganic arsenic on gilthead seabream (Sparus aurata L.). Aquatic Toxicology134–135, 112–119. https://doi.org/10.1016/j.aquatox.2013.03.015

    Herath, I., Vithanage, M., Bundschuh, J., Maity, J. P., & Bhattacharya, P. (2016). Natural arsenic in global groundwaters: distribution and geochemical triggers for mobilization. Current Pollution Reports2(1), 68–89. https://doi.org/10.1007/s40726-016-0028-2

    Higgins, M. A., Metcalf, M. J., & Robbins, G. A. (2021). Nonpoint source arsenic contamination of soil and groundwater from legacy pesticides. Journal of Environmental Quality51(1), 66–77. https://doi.org/10.1002/jeq2.20304

    Hoy, K. S., Davydiuk, T., Chen, X., Lau, C., Schofield, J. R. M., Lu, X., Graydon, J. A., Mitchell, R., Reichert, M., & Le, X. C. (2023). Arsenic speciation in freshwater fish: challenges and research needs. Food Quality and Safety7https://doi.org/10.1093/fqsafe/fyad032

    Kalay, M., & Canli, M. (2000). Elimination of Essential (Cu, Zn) and Non-Essential (Cd, Pb) Metals from Tissues of a Freshwater Fish Tilapia zilli. TÜBİTAK Academic Journals. https://journals.tubitak.gov.tr/zoology/vol24/iss4/11

    Kamboj, V., Kamboj, N., Sharma, A. K., & Bisht, A. (2022). Fish Diversity Associated with Environmental Parameters in Impacted Area of Ganga River, India. Proceedings of the National Academy of Sciences India Section B Biological Sciences93(1), 79–90. https://doi.org/10.1007/s40011-022-01393-9

    Kamila, S., Dey, K. K., Das, T., & Chattopadhyay, A. (2025). Mixture effects of arsenic and chromium on erythrocytic nuclear abnormalities and expression of DNA repair, tumor suppressor and apoptotic genes in liver of zebrafish. Environmental Toxicology and Pharmacology114, 104640. https://doi.org/10.1016/j.etap.2025.104640

    Khan, M. I., Ahmad, M. F., Ahmad, I., Ashfaq, F., Wahab, S., Alsayegh, A. A., Kumar, S., & Hakeem, K. R. (2022). Arsenic Exposure through Dietary Intake and Associated Health Hazards in the Middle East. Nutrients14(10), 2136. https://doi.org/10.3390/nu14102136

    Kim, J., & Kang, J. (2015). The arsenic accumulation and its effect on oxidative stress responses in juvenile rockfish, Sebastes schlegelii, exposed to waterborne arsenic (As3+). Environmental Toxicology and Pharmacology39(2), 668–676. https://doi.org/10.1016/j.etap.2015.01.012

    Kretsinger, R. H., Uversky, V. N., & Permyakov, E. A. (2013). Encyclopedia of Metalloproteinshttps://bwtest.upwr.edu.pl/info/book/UPWr4b359cbe3fea4eb3b062fcae2d310bbe?ps=20&title=Publikacja%2B%25E2%2580%2593%2BEncyclopedia%2Bof%2BMetalloproteins%2B%25E2%2580%2593%2BUniwersytet%2BPrzyrodniczy%2Bwe%2BWroc%25C5%2582awiu+title&lang=pl&pn=1

    Kumar, N., Chandan, N. K., Bhushan, S., Singh, D. K., & Kumar, S. (2023). Health risk assessment and metal contamination in fish, water and soil sediments in the East Kolkata Wetlands, India, Ramsar site. Scientific Reports13(1). https://doi.org/10.1038/s41598-023-28801-y

    Kumar, R., & Banerjee, T. (2016). Arsenic induced hematological and biochemical responses in nutritionally important catfish Clarias batrachus (L.). Toxicology Reports3, 148–152. https://doi.org/10.1016/j.toxrep.2016.01.001

    Kumar, V., Malik, D. S., & Sharma, A. K. (2018). Study on distribution pattern of benthic diversity in relation to water quality of river Ganga and its tributaries. Journal of Emerging Technologies and Innovative Research5(5), 88-103.

    Kumari, B., Kumar, V., Sinha, A. K., Ahsan, J., Ghosh, A. K., Wang, H., & DeBoeck, G. (2016). Toxicology of arsenic in fish and aquatic systems. Environmental Chemistry Letters15(1), 43–64. https://doi.org/10.1007/s10311-016-0588-9

    Kumpiene, J., Nordmark, D., Hamberg, R., Carabante, I., Simanavičienė, R., & Aksamitauskas, V. Č. (2016). Leaching of arsenic, copper and chromium from thermally treated soil. Journal of Environmental Management183, 460–466. https://doi.org/10.1016/j.jenvman.2016.08.080

    Magellan, K., Barral-Fraga, L., Rovira, M., Srean, P., Urrea, G., García-Berthou, E., & Guasch, H. (2014). Behavioural and physical effects of arsenic exposure in fish are aggravated by aquatic algae. Aquatic Toxicology156, 116–124. https://doi.org/10.1016/j.aquatox.2014.08.006

    Malik, A., Khalid, F., Hidait, N., Anjum, K. M., Mahad, S., Razaq, A., Azmat, H., & Majeed, M. B. B. (2023). Arsenic toxicity in fish: Sources and impacts. In IntechOpen eBookshttps://doi.org/10.5772/intechopen.1001468

    Masuda, H. (2018). Arsenic cycling in the Earth’s crust and hydrosphere: interaction between naturally occurring arsenic and human activities. Progress in Earth and Planetary Science5(1). https://doi.org/10.1186/s40645-018-0224-3

    Mekkawy, I. A., Mahmoud, U. M., Moneeb, R. H., & Sayed, A. E. H. (2020). Significance Assessment of Amphora coffeaeformis in Arsenic-Induced Hemato- Biochemical Alterations of African Catfish (Clarias gariepinus). Frontiers in Marine Science7https://doi.org/10.3389/fmars.2020.00191

    Nasser, N. A., Patterson, R. T., Roe, H. M., Galloway, J. M., Falck, H., & Sanei, H. (2020). Use of Arcellinida (Testate lobose amoebae) arsenic tolerance limits as a novel tool for biomonitoring arsenic contamination in lakes. Ecological Indicators113, 106177. https://doi.org/10.1016/j.ecolind.2020.106177

    Neff, J. M. (1997). Ecotoxicology of arsenic in the marine environment. Environmental Toxicology and Chemistry16(5), 917–927. https://doi.org/10.1002/etc.5620160511

    Orloff, K., Mistry, K., & Metcalf, S. (2009). Biomonitoring for environmental exposures to arsenic. Journal of Toxicology and Environmental Health Part B12(7), 509–524. https://doi.org/10.1080/10937400903358934

    Pedlar, R., Ptashynski, M., Wautier, K., Evans, R., Baron, C., & Klaverkamp, J. (2002). The accumulation, distribution, and toxicological effects of dietary arsenic exposure in lake whitefish (Coregonus clupeaformis) and lake trout (Salvelinus namaycush). Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology131(1), 73–91. https://doi.org/10.1016/s1532-0456(01)00281-2

    Pongratz, R. (1998). Arsenic speciation in environmental samples of contaminated soil. The Science of the Total Environment224(1–3), 133–141. https://doi.org/10.1016/s0048-9697(98)00321-0

    Prakash, A. K. V. S. (2020). Effect of arsenic on enzyme activity of a fresh water cat fish, Mystus vittatus. Liver10(20), 30

    Rabbane, M. G., Kabir, M. A., Habibullah-Al-Mamun, M., & Mustafa, M. G. (2022). Toxic Effects of Arsenic in Commercially Important Fish Rohu Carp, Labeo rohita of Bangladesh. Fishes7(5), 217. https://doi.org/10.3390/fishes7050217

    Rahman, M. A., Hasegawa, H., & Lim, R. P. (2012). Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environmental Research116, 118–135. https://doi.org/10.1016/j.envres.2012.03.014

    Raza, M. A., Kanwal, Z., Shahid, A., Fatima, S., Sajjad, A., Riaz, S., & Naseem, S. (2021). Toxicity Evaluation of Arsenic Nanoparticles on Growth, Biochemical, Hematological, and Physiological Parameters of Labeo rohita Juveniles. Advances in Materials Science and Engineering2021(1). https://doi.org/10.1155/2021/5185425

    Sahu, G., & Kumar, V. (2021). The Toxic Effect of Fluoride and Arsenic on Behaviour and Morphology of Catfish (Clarias batrachus). Nature Environment and Pollution Technology20(1), 371–375. https://doi.org/10.46488/nept.2021.v20i01.043

    Sakthivel, S., Dhanapal, A. R., Munisamy, V. S., Nasirudeen, M. P., Selvaraj, V., Velu, V., & Gurusamy, A. (2022). Molecular characterization and expression profiling of arsenic mediated stress-responsive genes in Dawkinsia tambraparniei (Silas, 1954). Journal of Applied Biology & Biotechnologyhttps://doi.org/10.7324/jabb.2023.117527

    Sarkis-Onofre, R., Catalá-López, F., Aromataris, E., & Lockwood, C. (2021). How to properly use the PRISMA Statement. Systematic Reviews10(1). https://doi.org/10.1186/s13643-021-01671-z

    Sevcikova, M., Modra, H., Slaninova, A., Svobodova, Z., & Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic. (2011). Metals as a cause of oxidative stress in fish: a review. In Veterinarni Medicina (Vol. 56, pp. 537–546). http://vetmed.agriculturejournals.cz/pdfs/vet/2011/11/02.pdf

    Sharma, A. K., Malik, D. S., & Bargali, H. (2018). Present status of fish diversity and population abundance of selected fish species in Bhagirathi River at Uttarakhand. International journal of creative research thoughts6(1), 432-438

    Shekhar, C., Khosya, R., Sharma, A. K., Thakur, K., Mahajan, D., Kumar, R., Kumar, S., & Sharma, A. K. (2025). A systematic review on health risks of water pollutants: classification, effects and innovative solutions for conservation. Toxicology Research, 14(1). https://doi.org/10.1093/toxres/tfaf014

    Shekhar, C., Khosya, R., Thakur, K., Mahajan, D., Kumar, R., Kumar, S., & Sharma, A. K. (2024). A systematic review of pesticide exposure, associated risks, and Long-Term human health impacts. Toxicology Reports, 13, 101840. https://doi.org/10.1016/j.toxrep.2024.101840

    Shen, F., Liu, J., Dong, Y., & Gu, C. (2018). Insights into the effect of chlorine on arsenic release during MSW incineration: An on-line analysis and kinetic study. Waste Management75, 327–332. https://doi.org/10.1016/j.wasman.2018.01.030

    Singh, A. K., & Banerjee, T. K. (2008). Toxic effects of sodium arsenate (Na2HAsO4x7H2O) on the skin epidermis of air-breathing catfish Clarias batrachus (L.). Veterinarski Arhiv78(1), 73-88

    Slimak, M., & Delos, C. (1983). Environmental pathways of exposure to 129 priority pollutants. Journal of Toxicology Clinical Toxicology21(1–2), 39–63. https://doi.org/10.3109/15563658308990410

    Smedley, P., & Kinniburgh, D. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry17(5), 517–568. https://doi.org/10.1016/s0883-2927(02)00018-5

    Srivastava, N. K., & Prakash, S. (2019). Effect of Zinc on the Histopathology of Gill, Liver and Kidney of Fresh Water Catfish, Clarias batrachus (Linn.). International Journal of Biological Innovations01(01), 08–13. https://doi.org/10.46505/ijbi.2019.1102

    Thomas, D. J. (2007). Molecular processes in cellular arsenic metabolism. Toxicology and Applied Pharmacology222(3), 365–373. https://doi.org/10.1016/j.taap.2007.02.007

    Tomar, G., Malik, D. S., Sharma, A. K., Kamboj, V., & Kumar, V. (2022). Assessment of water quality and biodiversity status of Alaknanda River at Garhwal, Uttarakhand: a case study. In Springer proceedings in earth and environmental sciences (pp. 121–136). https://doi.org/10.1007/978-3-031-05335-1_8

    Wang, C., Liu, H., Zhang, Y., Zou, C., & Anthony, E. J. (2018). Review of arsenic behavior during coal combustion: Volatilization, transformation, emission and removal technologies. Progress in Energy and Combustion Science68, 1–28. https://doi.org/10.1016/j.pecs.2018.04.001

    Zhang, W., Miao, A. J., Wang, N. X., Li, C., Sha, J., Jia, J., ... & Ok, Y. S. (2022). Arsenic bioaccumulation and biotransformation in aquatic organisms. Environment International163, 107221. https://doi.org/10.1016/j.envint.2022.107221