Arsenic is found globally in both freshwater and marine ecosystems, posing a threat to aquatic life. It exists in organic and inorganic forms, with the inorganic variant being more toxic. While most water bodies contain inorganic arsenic, organic forms are often prevalent in fish. Both natural and human activities contribute to arsenic contamination in water. The bioaccumulation of arsenic and its transfer through the aquatic food chain highlight its significance as an environmental concern. Prolonged exposure to low levels of arsenic in fish can lead to accumulation, impacting higher trophic levels, including larger fish and humans who consume them. This review aims to enhance our understanding of arsenic sources, its bioaccumulation, food chain transfer, and effects on fish health. It underscores the urgent need to tackle arsenic contamination in water bodies to protect aquatic ecosystems and the well-being of wildlife and human populations reliant on these resources.
arsenic, fish health, bioaccumulation, biotransformation, arsenic speciation
Aamir, S. (2020). Heavy metals (Cadmium, Mercury and Arsenic) accumulation in different organs of Sperata sarwari collected from Indus River, Head Taunsa, Dera Ghazi Khan, Punjab, Pakistan. Pure and Applied Biology, 9(2). https://doi.org/10.19045/bspab.2020.90153
Ahmed, M. K., Habibullah-Al-Mamun, M., Parvin, E., Akter, M. S., & Khan, M. S. (2013). Arsenic induced toxicity and histopathological changes in gill and liver tissue of freshwater fish, tilapia (Oreochromis mossambicus). Experimental and Toxicologic Pathology, 65(6), 903–909. https://doi.org/10.1016/j.etp.2013.01.003
Ali, M. M., Ali, M. L., Rakib, M. R. J., Islam, M. S., Habib, A., Hossen, S., Ibrahim, K. A., Idris, A. M., & Phoungthong, K. (2021). Contamination and ecological risk assessment of heavy metals in water and sediment from hubs of fish resource river in a developing country. Toxin Reviews, 41(4), 1253-1268. https://doi.org/10.1080/15569543.2021.2001829
Alonso, D. L., Pérez, R., Okio, C. K., & Castillo, E. (2020). Assessment of mining activity on arsenic contamination in surface water and sediments in southwestern area of Santurbán paramo, Colombia. Journal of Environmental Management, 264, 110478. https://doi.org/10.1016/j.jenvman.2020.110478
Altikat, S., Uysal, K., Kuru, H. I., Kavasoglu, M., Ozturk, G. N., & Kucuk, A. (2014). The effect of arsenic on some antioxidant enzyme activities and lipid peroxidation in various tissues of mirror carp (Cyprinus carpio carpio). Environmental Science and Pollution Research, 22(5), 3212–3218. https://doi.org/10.1007/s11356-014-2896-6
Ardini, F., Dan, G., & Grotti, M. (2019). Arsenic speciation analysis of environmental samples. Journal of Analytical Atomic Spectrometry, 35(2), 215–237. https://doi.org/10.1039/c9ja00333a
Babich, R., & Van Beneden, R. J. (2019). Effect of arsenic exposure on early eye development in zebrafish (Danio rerio). Journal of Applied Toxicology, 39(6), 824–831. https://doi.org/10.1002/jat.3770
Bia, G., Borgnino, L., Gaiero, D., & García, M. (2014). Arsenic-bearing phases in South Andean volcanic ashes: Implications for As mobility in aquatic environments. Chemical Geology, 393–394, 26–35. https://doi.org/10.1016/j.chemgeo.2014.10.007
Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691
Bundschuh, J., Armienta, M. A., Morales-Simfors, N., Alam, M. A., López, D. L., Quezada, V. D., Dietrich, S., Schneider, J., Tapia, J., Sracek, O., Castillo, E., Parra, L. M., Espinoza, M. A., Guilherme, L. R. G., Sosa, N. N., Niazi, N. K., Tomaszewska, B., Allende, K. L., Bieger, K., . . . Ahmad, A. (2020). Arsenic in Latin America: New findings on source, mobilization and mobility in human environments in 20 countries based on decadal research 2010-2020. Critical Reviews in Environmental Science and Technology, 51(16), 1727-1865. https://doi.org/10.1080/10643389.2020.1770527
Byeon, E., Kang, H., Yoon, C., & Lee, J. (2021). Toxicity mechanisms of arsenic compounds in aquatic organisms. Aquatic Toxicology, 237, 105901. https://doi.org/10.1016/j.aquatox.2021.105901
Camacho, J., De Conti, A., Pogribny, I. P., Sprando, R. L., & Hunt, P. R. (2022). Assessment of the effects of organic vs. inorganic arsenic and mercury in Caenorhabditis elegans. Current Research in Toxicology, 3, 100071. https://doi.org/10.1016/j.crtox.2022.100071
Canivet, V., Chambon, P., & Gibert, J. (2001). Toxicity and bioaccumulation of arsenic and chromium in epigean and hypogean freshwater macroinvertebrates. Archives of Environmental Contamination and Toxicology, 40(3), 345–354. https://doi.org/10.1007/s002440010182
Celino, F. T., Yamaguchi, S., Miura, C., & Miura, T. (2009). Arsenic inhibits in vitro spermatogenesis and induces germ cell apoptosis in Japanese eel (Anguilla japonica). Reproduction, 138(2), 279–287. https://doi.org/10.1530/rep-09-0167
Chandel, M., Sharma, A. K., Thakur, K., Sharma, D., Brar, B., Mahajan, D., Kumari, H., Pankaj, P. P., & Kumar, R. (2024). Poison in the water: Arsenic’s silent assault on fish health. Journal of Applied Toxicology, 44(9), 1282–1301. https://doi.org/10.1002/jat.4581
Chételat, J., Cott, P. A., Rosabal, M., Houben, A., McClelland, C., Rose, E. B., & Amyot, M. (2019). Arsenic bioaccumulation in subarctic fishes of a mine-impacted bay on Great Slave Lake, Northwest Territories, Canada. PLoS ONE, 14(8), e0221361. https://doi.org/10.1371/journal.pone.0221361
D’Amico, A. R., Gibson, A. W., & Bain, L. J. (2013). Embryonic arsenic exposure reduces the number of muscle fibers in killifish (Fundulus heteroclitus). Aquatic Toxicology, 146, 196–204. https://doi.org/10.1016/j.aquatox.2013.11.010
Ganie, S. Y., Javaid, D., Hajam, Y. A., & Reshi, M. S. (2023). Arsenic toxicity: sources, pathophysiology and mechanism. Toxicology Research, 13(1). https://doi.org/10.1093/toxres/tfad111
Garai, P., Banerjee, P., Mondal, P., Ch, N., & Saha, R. (2021). Effect of heavy metals on fishes: toxicity and bioaccumulation. Journal of Clinical Toxicology, 1–10.
Gaworecki, K. M., Chapman, R. W., Neely, M. G., D’Amico, A. R., & Bain, L. J. (2011). Arsenic exposure to killifish during embryogenesis alters muscle development. Toxicological Sciences, 125(2), 522–531. https://doi.org/10.1093/toxsci/kfr302
Greani, S., Lourkisti, R., Berti, L., Marchand, B., Giannettini, J., Santini, J., & Quilichini, Y. (2017). Effect of chronic arsenic exposure under environmental conditions on bioaccumulation, oxidative stress, and antioxidant enzymatic defenses in wild trout Salmo trutta (Pisces, Teleostei). Ecotoxicology, 26(7), 930–941. https://doi.org/10.1007/s10646-017-1822-3
Guardiola, F., Gónzalez-Párraga, M., Cuesta, A., Meseguer, J., Martínez, S., Martínez-Sánchez, M., Pérez-Sirvent, C., & Esteban, M. (2013). Immunotoxicological effects of inorganic arsenic on gilthead seabream (Sparus aurata L.). Aquatic Toxicology, 134–135, 112–119. https://doi.org/10.1016/j.aquatox.2013.03.015
Herath, I., Vithanage, M., Bundschuh, J., Maity, J. P., & Bhattacharya, P. (2016). Natural arsenic in global groundwaters: distribution and geochemical triggers for mobilization. Current Pollution Reports, 2(1), 68–89. https://doi.org/10.1007/s40726-016-0028-2
Higgins, M. A., Metcalf, M. J., & Robbins, G. A. (2021). Nonpoint source arsenic contamination of soil and groundwater from legacy pesticides. Journal of Environmental Quality, 51(1), 66–77. https://doi.org/10.1002/jeq2.20304
Hoy, K. S., Davydiuk, T., Chen, X., Lau, C., Schofield, J. R. M., Lu, X., Graydon, J. A., Mitchell, R., Reichert, M., & Le, X. C. (2023). Arsenic speciation in freshwater fish: challenges and research needs. Food Quality and Safety, 7. https://doi.org/10.1093/fqsafe/fyad032
Kalay, M., & Canli, M. (2000). Elimination of Essential (Cu, Zn) and Non-Essential (Cd, Pb) Metals from Tissues of a Freshwater Fish Tilapia zilli. TÜBİTAK Academic Journals. https://journals.tubitak.gov.tr/zoology/vol24/iss4/11
Kamboj, V., Kamboj, N., Sharma, A. K., & Bisht, A. (2022). Fish Diversity Associated with Environmental Parameters in Impacted Area of Ganga River, India. Proceedings of the National Academy of Sciences India Section B Biological Sciences, 93(1), 79–90. https://doi.org/10.1007/s40011-022-01393-9
Kamila, S., Dey, K. K., Das, T., & Chattopadhyay, A. (2025). Mixture effects of arsenic and chromium on erythrocytic nuclear abnormalities and expression of DNA repair, tumor suppressor and apoptotic genes in liver of zebrafish. Environmental Toxicology and Pharmacology, 114, 104640. https://doi.org/10.1016/j.etap.2025.104640
Khan, M. I., Ahmad, M. F., Ahmad, I., Ashfaq, F., Wahab, S., Alsayegh, A. A., Kumar, S., & Hakeem, K. R. (2022). Arsenic Exposure through Dietary Intake and Associated Health Hazards in the Middle East. Nutrients, 14(10), 2136. https://doi.org/10.3390/nu14102136
Kim, J., & Kang, J. (2015). The arsenic accumulation and its effect on oxidative stress responses in juvenile rockfish, Sebastes schlegelii, exposed to waterborne arsenic (As3+). Environmental Toxicology and Pharmacology, 39(2), 668–676. https://doi.org/10.1016/j.etap.2015.01.012
Kretsinger, R. H., Uversky, V. N., & Permyakov, E. A. (2013). Encyclopedia of Metalloproteins. https://bwtest.upwr.edu.pl/info/book/UPWr4b359cbe3fea4eb3b062fcae2d310bbe?ps=20&title=Publikacja%2B%25E2%2580%2593%2BEncyclopedia%2Bof%2BMetalloproteins%2B%25E2%2580%2593%2BUniwersytet%2BPrzyrodniczy%2Bwe%2BWroc%25C5%2582awiu+title&lang=pl&pn=1
Kumar, N., Chandan, N. K., Bhushan, S., Singh, D. K., & Kumar, S. (2023). Health risk assessment and metal contamination in fish, water and soil sediments in the East Kolkata Wetlands, India, Ramsar site. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-28801-y
Kumar, R., & Banerjee, T. (2016). Arsenic induced hematological and biochemical responses in nutritionally important catfish Clarias batrachus (L.). Toxicology Reports, 3, 148–152. https://doi.org/10.1016/j.toxrep.2016.01.001
Kumar, V., Malik, D. S., & Sharma, A. K. (2018). Study on distribution pattern of benthic diversity in relation to water quality of river Ganga and its tributaries. Journal of Emerging Technologies and Innovative Research, 5(5), 88-103.
Kumari, B., Kumar, V., Sinha, A. K., Ahsan, J., Ghosh, A. K., Wang, H., & DeBoeck, G. (2016). Toxicology of arsenic in fish and aquatic systems. Environmental Chemistry Letters, 15(1), 43–64. https://doi.org/10.1007/s10311-016-0588-9
Kumpiene, J., Nordmark, D., Hamberg, R., Carabante, I., Simanavičienė, R., & Aksamitauskas, V. Č. (2016). Leaching of arsenic, copper and chromium from thermally treated soil. Journal of Environmental Management, 183, 460–466. https://doi.org/10.1016/j.jenvman.2016.08.080
Magellan, K., Barral-Fraga, L., Rovira, M., Srean, P., Urrea, G., García-Berthou, E., & Guasch, H. (2014). Behavioural and physical effects of arsenic exposure in fish are aggravated by aquatic algae. Aquatic Toxicology, 156, 116–124. https://doi.org/10.1016/j.aquatox.2014.08.006
Malik, A., Khalid, F., Hidait, N., Anjum, K. M., Mahad, S., Razaq, A., Azmat, H., & Majeed, M. B. B. (2023). Arsenic toxicity in fish: Sources and impacts. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.1001468
Masuda, H. (2018). Arsenic cycling in the Earth’s crust and hydrosphere: interaction between naturally occurring arsenic and human activities. Progress in Earth and Planetary Science, 5(1). https://doi.org/10.1186/s40645-018-0224-3
Mekkawy, I. A., Mahmoud, U. M., Moneeb, R. H., & Sayed, A. E. H. (2020). Significance Assessment of Amphora coffeaeformis in Arsenic-Induced Hemato- Biochemical Alterations of African Catfish (Clarias gariepinus). Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.00191
Nasser, N. A., Patterson, R. T., Roe, H. M., Galloway, J. M., Falck, H., & Sanei, H. (2020). Use of Arcellinida (Testate lobose amoebae) arsenic tolerance limits as a novel tool for biomonitoring arsenic contamination in lakes. Ecological Indicators, 113, 106177. https://doi.org/10.1016/j.ecolind.2020.106177
Neff, J. M. (1997). Ecotoxicology of arsenic in the marine environment. Environmental Toxicology and Chemistry, 16(5), 917–927. https://doi.org/10.1002/etc.5620160511
Orloff, K., Mistry, K., & Metcalf, S. (2009). Biomonitoring for environmental exposures to arsenic. Journal of Toxicology and Environmental Health Part B, 12(7), 509–524. https://doi.org/10.1080/10937400903358934
Pedlar, R., Ptashynski, M., Wautier, K., Evans, R., Baron, C., & Klaverkamp, J. (2002). The accumulation, distribution, and toxicological effects of dietary arsenic exposure in lake whitefish (Coregonus clupeaformis) and lake trout (Salvelinus namaycush). Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology, 131(1), 73–91. https://doi.org/10.1016/s1532-0456(01)00281-2
Pongratz, R. (1998). Arsenic speciation in environmental samples of contaminated soil. The Science of the Total Environment, 224(1–3), 133–141. https://doi.org/10.1016/s0048-9697(98)00321-0
Prakash, A. K. V. S. (2020). Effect of arsenic on enzyme activity of a fresh water cat fish, Mystus vittatus. Liver, 10(20), 30
Rabbane, M. G., Kabir, M. A., Habibullah-Al-Mamun, M., & Mustafa, M. G. (2022). Toxic Effects of Arsenic in Commercially Important Fish Rohu Carp, Labeo rohita of Bangladesh. Fishes, 7(5), 217. https://doi.org/10.3390/fishes7050217
Rahman, M. A., Hasegawa, H., & Lim, R. P. (2012). Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environmental Research, 116, 118–135. https://doi.org/10.1016/j.envres.2012.03.014
Raza, M. A., Kanwal, Z., Shahid, A., Fatima, S., Sajjad, A., Riaz, S., & Naseem, S. (2021). Toxicity Evaluation of Arsenic Nanoparticles on Growth, Biochemical, Hematological, and Physiological Parameters of Labeo rohita Juveniles. Advances in Materials Science and Engineering, 2021(1). https://doi.org/10.1155/2021/5185425
Sahu, G., & Kumar, V. (2021). The Toxic Effect of Fluoride and Arsenic on Behaviour and Morphology of Catfish (Clarias batrachus). Nature Environment and Pollution Technology, 20(1), 371–375. https://doi.org/10.46488/nept.2021.v20i01.043
Sakthivel, S., Dhanapal, A. R., Munisamy, V. S., Nasirudeen, M. P., Selvaraj, V., Velu, V., & Gurusamy, A. (2022). Molecular characterization and expression profiling of arsenic mediated stress-responsive genes in Dawkinsia tambraparniei (Silas, 1954). Journal of Applied Biology & Biotechnology. https://doi.org/10.7324/jabb.2023.117527
Sarkis-Onofre, R., Catalá-López, F., Aromataris, E., & Lockwood, C. (2021). How to properly use the PRISMA Statement. Systematic Reviews, 10(1). https://doi.org/10.1186/s13643-021-01671-z
Sevcikova, M., Modra, H., Slaninova, A., Svobodova, Z., & Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic. (2011). Metals as a cause of oxidative stress in fish: a review. In Veterinarni Medicina (Vol. 56, pp. 537–546). http://vetmed.agriculturejournals.cz/pdfs/vet/2011/11/02.pdf
Sharma, A. K., Malik, D. S., & Bargali, H. (2018). Present status of fish diversity and population abundance of selected fish species in Bhagirathi River at Uttarakhand. International journal of creative research thoughts, 6(1), 432-438
Shekhar, C., Khosya, R., Sharma, A. K., Thakur, K., Mahajan, D., Kumar, R., Kumar, S., & Sharma, A. K. (2025). A systematic review on health risks of water pollutants: classification, effects and innovative solutions for conservation. Toxicology Research, 14(1). https://doi.org/10.1093/toxres/tfaf014
Shekhar, C., Khosya, R., Thakur, K., Mahajan, D., Kumar, R., Kumar, S., & Sharma, A. K. (2024). A systematic review of pesticide exposure, associated risks, and Long-Term human health impacts. Toxicology Reports, 13, 101840. https://doi.org/10.1016/j.toxrep.2024.101840
Shen, F., Liu, J., Dong, Y., & Gu, C. (2018). Insights into the effect of chlorine on arsenic release during MSW incineration: An on-line analysis and kinetic study. Waste Management, 75, 327–332. https://doi.org/10.1016/j.wasman.2018.01.030
Singh, A. K., & Banerjee, T. K. (2008). Toxic effects of sodium arsenate (Na2HAsO4x7H2O) on the skin epidermis of air-breathing catfish Clarias batrachus (L.). Veterinarski Arhiv, 78(1), 73-88
Slimak, M., & Delos, C. (1983). Environmental pathways of exposure to 129 priority pollutants. Journal of Toxicology Clinical Toxicology, 21(1–2), 39–63. https://doi.org/10.3109/15563658308990410
Smedley, P., & Kinniburgh, D. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568. https://doi.org/10.1016/s0883-2927(02)00018-5
Srivastava, N. K., & Prakash, S. (2019). Effect of Zinc on the Histopathology of Gill, Liver and Kidney of Fresh Water Catfish, Clarias batrachus (Linn.). International Journal of Biological Innovations, 01(01), 08–13. https://doi.org/10.46505/ijbi.2019.1102
Thomas, D. J. (2007). Molecular processes in cellular arsenic metabolism. Toxicology and Applied Pharmacology, 222(3), 365–373. https://doi.org/10.1016/j.taap.2007.02.007
Tomar, G., Malik, D. S., Sharma, A. K., Kamboj, V., & Kumar, V. (2022). Assessment of water quality and biodiversity status of Alaknanda River at Garhwal, Uttarakhand: a case study. In Springer proceedings in earth and environmental sciences (pp. 121–136). https://doi.org/10.1007/978-3-031-05335-1_8
Wang, C., Liu, H., Zhang, Y., Zou, C., & Anthony, E. J. (2018). Review of arsenic behavior during coal combustion: Volatilization, transformation, emission and removal technologies. Progress in Energy and Combustion Science, 68, 1–28. https://doi.org/10.1016/j.pecs.2018.04.001
Zhang, W., Miao, A. J., Wang, N. X., Li, C., Sha, J., Jia, J., ... & Ok, Y. S. (2022). Arsenic bioaccumulation and biotransformation in aquatic organisms. Environment International, 163, 107221. https://doi.org/10.1016/j.envint.2022.107221