Cornous Biology, Volume 3, Issue 3 : 14-32. Doi : 10.37446/corbio/ra/3.3.2025.14-32
Review Article

OPEN ACCESS | Published on : 30-Sep-2025

Reframing the collapse of the Aral Sea through the principles of ecotoxicology: a critical synthesis of toxicological governance, environmental justice, and restoration

  • Chee Kong Yap
  • Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Musefiu Adebisi Tiamiyu
  • Department of Biosciences and Biotechnology, University of Medical Sciences, P.M.B. 536, Ondo State, Nigeria.
  • Noraini Abu Bakar
  • Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Wan Mohd Syazwan
  • Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Noor Azrizal-Wahid
  • Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Rosimah Nulit
  • Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Ahmad Dwi Setyawan
  • Department of Environmental Science, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret. Jl. Ir. Sutami 36A Surakarta 57126, Central Java, Indonesia.; Biodiversity Research Group, Universitas Sebelas Maret. Jl. Ir. Sutami 36A, Surakarta 57126, Central Java, Indonesia.
  • Kennedy Aaron Aguol
  • Centre for the Promotion of Knowledge and Language Learning, PPIB, Jalan UMS, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Malaysia.

Abstract

The degradation of the Aral Sea is among the most severe man-made environmental catastrophes of the 20th and 21st centuries. In this article, the tenets of ecotoxicology, namely, i) Source–Pathway–Receptor, ii) Dose–Response, iii) Bioavailability, iv) Accumulation, v) Mode of Action, vi) Ecological Relevance, vii) Mixture Toxicity, viii) Community Effects, ix) Toxicokinetics, and x) Risk Assessment, are used to reinterpret the toxicological perspective of the ecological degradation of the Aral Sea. This article calls for an expansive historical-ecological synthesis of the manner in which cumulative exposure to toxics, desertification, and systematic water mismanagement have inflicted irreversible damage upon biotic and human communities by synthesizing ecological data, health indicators, remote sensing studies, and governance investigations. Every theme manifests serious gaps in monitoring, risk communication, and regulatory reaction, thus highlighting the lack of integrated toxicological governance in reducing environmental and public health issues. The research shows that ecotoxicology is a framework for ethical and multidisciplinary environmental action and a discipline for assessing chemical risks. The Aral Sea disaster therefore demonstrates how oversight of the toxicological foundations of ecosystem failure can exacerbate health crises, social disintegration, and environmental irreversibility. This article supports the integration of ecotoxicological concepts into regional policy, restoration planning, and resilience-enhancement at the community level. Eventually, the implementation of these concepts may bring about more equitable, science-based, and sustainable futures for previously marginalized ecosystems.

Keywords

aral sea, ecotoxicology, environmental collapse, toxicological governance, restoration ethics

References

  • Ahn, Y.-J., Kamalov, B., & Juraev, Z. (2024). Revisiting the Aral Sea crisis: A geographical perspective. International Journal of Environmental Studies, 81(6), 2381–2398. https://doi.org/10.1080/00207233.2024.2422695

    Akramkhanov, A., Akbarov, A., Umarova, S., & Le, Q. B. (2022). Agricultural Livelihood Types and Type-Specific Drivers of Crop Production Diversification: Evidence from Aral Sea Basin Region. Sustainability15(1), 65.

    https://doi.org/10.3390/su15010065

    Alieva, D., Usmonova, G., Shadmanov, S., & Aktamov, S. (2023). Fishery culture, sustainable resources usage and transformations needed for local community development: The case of Aral Sea. Frontiers in Marine Science, 10, 1285618. https://doi.org/10.3389/fmars.2023.1285618

    Alikhanova, S., & Bull, J. W. (2023). Review of nature-based solutions in dryland ecosystems: The Aral Sea case study. Environmental Management, 72(3), 457–472. https://doi.org/10.1007/s00267-023-01822-z

    Alikhanova, S., Milner-Gulland, E. J., & Bull, J. W. (2024). Exploring the human-nature nexus towards effective nature-based solutions: The Aral Sea case. Land Use Policy, 139, 107073. https://doi.org/10.1016/j.landusepol.2024.107073

    Amirgaliyev, N., Opp, C., Askarova, M., Ismukhanova, L., Madibekov, A., & Zhadi, A. (2023). Long-term dynamics of persistent organic pollutants in water bodies of the Aral Sea–Syrdarya basin. Applied Sciences, 13(20), 11453. https://doi.org/10.3390/app132011453

    Andrulionis, N. Y., Izhitskiy, A. S., Savvichev, A. S., & Zavialov, P. O. (2025). Recent changes in physical and biogeochemical state in residual basins of the Aral Sea. Aquatic Geochemistry, 31(1), 1. https://doi.org/10.1007/s10498-024-09436-5

    Asadov, D. A., Khamraev, A. K., & Yuldashev, G. K. (2023). Ethnogeographic features of tuberculosis incidence in the South Aral Sea region [Этногеографические особенности заболеваемости туберкулезом в зоне Южного Приаралья]. Tuberculosis and Lung Diseases, 101(4), 6–12. https://doi.org/10.58838/2075-1230-2023-101-4-6-12

    Aslan, G., De Michele, M., Raucoules, D., Renard, F., Dehls, J., Penna, I., Hermanns, R., & Çakir, Z. (2023). Dynamics of a giant slow landslide complex along the coast of the Aral Sea, Central Asia. Turkish Journal of Earth Sciences, 32(6), 819–832. doi:10.55730/1300-0985.1876

    Aytenov, I. S., Bozorov, T. A., Zhang, D., Samadiy, S. A., Muhammadova, D. A., Isokulov, M. Z., Murodova, S. M., Zakirova, O. R., Chinikulov, B. K., & Sherimbetov, A. G. (2024). Uncovering the antifungal potential of plant-associated cultivable bacteria from the Aral Sea region against phytopathogenic fungi. Pathogens, 13(7), 585. https://doi.org/10.3390/pathogens13070585

    Bao, A., Yu, T., Xu, W., Lei, J., Jiapaer, G., Chen, X., Tojibaev, K., Shomurodov, K., Xabibullaev, B., & Kamalatdin, I. (2024). Ecological problems and ecological restoration zoning of the Aral Sea. Journal of Arid Land, 16(3), 315–330. doi:10.1007/s40333-024-0055-6

    Baspakova, A., Aldanova, A., Zinalieva, A., Umbetova, A., Makhashbay, A., & Rakhmanov, Y. (2024). Aral Sea environmental disasters area population’s physical activity level assessment – The first step for targeted health promotion. Polski Merkuriusz Lekarski, 52(3), 268–276. https://doi.org/10.36740/Merkur202403102

    Beasley, V. R., & Levengood, J. M. (2007). Principles of ecotoxicology. In R. C. Gupta (Ed.), Veterinary toxicology: Basic and clinical principles (pp. 689–708). Academic Press. https://doi.org/10.1016/B978-012370467-2/50154-1

    Beasley, V. R., & Levengood, J. M. (2012). Principles of ecotoxicology. In R. C. Gupta (Ed.), Veterinary toxicology: Basic and clinical principles (pp. 831–855). Academic Press. https://doi.org/10.1016/B978-0-12-385926-6.00077-6

    Berdimbetov, T., Pushpawela, B., Murzintcev, N., Nietullaeva, S., Gafforov, K., Tureniyazova, A., & Madetov, D. (2024). Unraveling the intricate links between the dwindling Aral Sea and climate variability during 2002–2017. Climate, 12(7), 105. https://doi.org/10.3390/cli12070105

    Berdimbetov, T., Shelton, S., Pushpawela, B., Rathnayake, U., Koshim, A. G., Yegizbayeva, A., & Nietullaeva, S. (2024). Use of intensity analysis and transfer matrix to characterize land conversion in the Aral Sea Basin under changing climate. Modeling Earth Systems and Environment, 10(4), 4717–4729. https://doi.org/10.1007/s40808-024-02019-x

    Bespalova, K. (2023). On ruins, debris, and ghosts: The temporality of disaster in the film “Aral, Fishing in the Invisible Sea.” Apparatus, 2023(17), 1. doi:10.17892/app.2023.00017.334

    Boymirzaev, A. S., Berdimbetova, G. E., & Karlybaeva, B. P. (2024). Exclusion liquid chromatography of carboxymethylchitin and carboxymethylchitosan from crustacean Artemia parthenogenetica of the Aral Sea. Proceedings of the National Academy of Sciences of Belarus, Chemical Series, 60(1), 45–52. https://doi.org/10.29235/1561-8331-2024-60-1-45-52

    Chernyh, N. A., Merkel, A. Y., Kondrasheva, K. V., Alimov, J. E., Klyukina, A. A., Bonch-Osmolovskaya, E. A., Slobodkin, A. I., & Davranov, K. D. (2024). At the shores of a vanishing sea: Microbial communities of Aral and Southern Aral Sea region. Microbiology (Russian Federation), 93(1), 1–13. https://doi.org/10.1134/S0026261723602944

    Cui, M., Zheng, X., Li, Y., & Wang, Y. (2023). Analysis of NDVI trends and driving factors in the buffer zone of the Aral Sea. Water (Switzerland), 15(13), 2473. https://doi.org/10.3390/w15132473

    Djumaboev, K., Amirova, I., Primov, A., & Ishchanov, J. (2024). Farmers on the front line: Perceptions, practices and discrepancies from the Aral Sea's Karakalpakstan and Khorezm regions. Irrigation and Drainage, 73(3), 1102–1118. https://doi.org/10.1002/ird.2922

    Duan, Z., Afzal, M. M., Liu, X., Chen, S., Du, R., Zhao, B., Yuan, W., & Awais, M. (2024). Effects of climate change and human activities on environment and area variations of the Aral Sea in Central Asia. International Journal of Environmental Science and Technology, 21(2), 1715–1728. https://doi.org/10.1007/s13762-023-05072-8

    Duan, Z., Wang, X., Sun, L., Zhou, M., & Luo, Y. (2024). An insight into effect of soil salinity on vegetation dynamics in the exposed seafloor of the Aral Sea. Science of the Total Environment, 951, 175615. https://doi.org/10.1016/j.scitotenv.2024.175615

    Edwin, I. E., Chukwuka, O., Ochege, F. U., Ling, Q., Chen, B., Nzabarinda, V., Ajaero, C., Hamdi, R., & Luo, G. (2024). Quantifying land change dynamics, resilience and feedback: A comparative analysis of the Lake Chad Basin in Africa and Aral Sea Basin in Central Asia. Journal of Environmental Management, 361, 121218. doi:10.1016/j.jenvman.2024.121218

    EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues (PPR)). (2006). Opinion of the Scientific Panel on Plant Protection Products and their Residues (PPR) on the scientific principles in the assessment and guidance provided in the area of environmental fate, exposure, ecotoxicology, and residues between 2003 and 2006. EFSA Journal, 4(6), Article 360. https://doi.org/10.2903/j.efsa.2006.360

    Erkudov, V. O., Rozumbetov, K. U., González-Fernández, F. T., Pugovkin, A. P., Nazhimov, I. I., Matchanov, A. T., & Ceylan, H. İ. (2023). The effect of environmental disasters on endocrine status, hematology parameters, body composition, and physical performance in young soccer players: A case study of the Aral Sea region. Life, 13(7), 1503. https://doi.org/10.3390/life13071503

    Erkudov, V. O., Rozumbetov, K. U., Pugovkin, A. P., Matchanov, A. T., Esimbetov, A. T., Arachchi, S., & Rathnayake, U. (2023). Assessment of youth fitness under long-term exposure to toxic environmental conditions due to pesticides: Case from Aral Sea region. Case Studies in Chemical and Environmental Engineering, 8, 100504. https://doi.org/10.1016/j.cscee.2023.100504

    Féaux de la Croix, J., & Samakov, A. (2024). Moving beyond the framing impasse in the Aral Sea Delta: Vernacular knowledge of salinization and its potential for social learning towards sustainability. Sustainability (Switzerland), 16(19), 8605. https://doi.org/10.3390/su16198605

    Fomenko, G., & Fomenko, M. A. (2023). Evaluating measures to support dryland rural populations under high climatic uncertainty and risk: The example of the Aral Sea region. Reliability: Theory and Applications, 18(Special Issue 5), 231–237. doi:10.24412/1932-2321-2023-575-231-237

    Ford, A. T. (2017). Comment on “Principles of sound ecotoxicology.” Environmental Science & Technology, 51(19), 11493–11495. https://doi.org/10.1021/acs.est.7b03385

    Gagné, F. (2014). Biochemical ecotoxicology: Principles and methods (pp. 1–257). Elsevier. https://doi.org/10.1016/C2012-0-07586-2

    Han, Y., Ma, X., Yan, W., & Wang, Y. (2024). Windbreak and sand fixation service flow simulation in the terminal lake basin of inland rivers in arid regions: A case study of the Aral Sea basin. Science of the Total Environment, 945, 174047. https://doi.org/10.1016/j.scitotenv.2024.174047

    Harris, C. A., Scott, A. P., Johnson, A. C., Panter, G. H., Sheahan, D., Roberts, M., & Sumpter, J. P. (2014). Principles of sound ecotoxicology. Environmental Science & Technology, 48(6), 3100–3111. https://doi.org/10.1021/es4047507

    He, J., Yu, Y., Sun, L., Li, C., Zhang, H., Malik, I., Wistuba, M., & Yu, R. (2024). Spatiotemporal variations of ecosystem services in the Aral Sea Basin under different CMIP6 projections. Scientific Reports, 14(1), 12237. https://doi.org/10.1038/s41598-024-62802-9

    Huang, F., Ochoa, C. G., & Guo, L. (2023). Estimating environmental water requirements for terminal lakes under varying meteorological conditions: A case study of the Big Aral Sea, Central Asia. Journal of Hydrology, 621, 129660. https://doi.org/10.1016/j.jhydrol.2023.129660

    Izhitskiy, A., & Ayzel, G. (2023). Water balance of the regulated arid lake as an indicator of climate change and anthropogenic impact: The North (Small) Aral Sea case study. Water (Switzerland), 15(8), 1464. doi:10.3390/w15081464

    Jiemuratova, G. K., Aripova, T. U., Kamalov, Z. S., & Mambetkarimov, G. A. (2024). Interrelations between iron content and immune dysfunctions in frequently ill children of the Aral Sea region. Russian Journal of Immunology, 27(2), 281–286. https://doi.org/10.46235/1028-7221-16661-IBI

    Jin, M., Wu, J., Zhang, H., Zhao, Z., Alam, M., & Guo, R. (2023). Study on the Aral Sea crisis from the risk assessment of polycyclic aromatic hydrocarbons and organochlorine pesticides in surface water of Amu Darya river basin in Uzbekistan. Frontiers in Earth Science, 11, 1295485. https://doi.org/10.3389/feart.2023.1295485

    Karapetyan, L. A., Balykova, A. N., Chervyakova, N. S., Fedorov, A. V., Eroshenko, G. A., Abramova, E. G., Germanchuk, V. G., Kuklev, E. V., & Toporkov, V. P. (2024). Retrospective molecular investigation of plague outbreaks in the Northern Aral Sea Region in the mid-20th century [Ретроспективная молекулярная экспертиза вспышек чумы в Северном Приаралье в середине XX века]. Problemy Osobo Opasnykh Infektsii, (4), 94–106. https://doi.org/10.21055/0370-1069-2024-4-94-106

    Karlybaeva, M.A., Rakhimova, Sh. Kh., Azamatov, A.A., Mezhlumyan, L.G., Baltabaev, M.T., Adilov, B.A., & Abdullaev, N.D. (2024). Amino-acid composition of proteins from Xylosalsola richteri growing in Northwestern Kyzylkum and under southern Aral-Sea conditions. Chemistry of Natural Compounds, 60(5), 1000–1002. https://doi.org/10.1007/s10600-024-04505-1

    Kayiranga, A., Chen, X., Ingabire, D., Liu, T., Li, Y., Nzabarinda, V., Ochege, F. U., Hirwa, H., Duulatov, E., & Nthangeni, W. (2024). Anthropogenic activities and the influence of desertification processes on the water cycle and water use in the Aral Sea Basin. Journal of Hydrology: Regional Studies, 51, 101598. https://doi.org/10.1016/j.ejrh.2023.101598

    Khaitov, B., Karimov, A., Kodirov, A., Yuldasheva, R., & Kim, Y. C. (2023). Identification, characterization and domestication of new sorghum (Sorghum bicolor L.) genotypes to saline environments of the Aral Sea regions. Plant Science Today, 10(1), 48–56. https://doi.org/10.14719/pst.1797

    Kim, G., Ahn, J., Chang, H., An, J., Khamzina, A., Kim, G., & Son, Y. (2024). Effect of vegetation introduction versus natural recovery on topsoil properties in the dried Aral Sea bed. Land Degradation and Development, 35(13), 4121–4132. https://doi.org/10.1002/ldr.5209

    Kim, T., Yun, Y., Park, S., Oh, J., & Han, Y. (2023). Change detection over the Aral Sea using relative radiometric normalization based on deep learning. Remote Sensing Letters, 14(8), 821–832. https://doi.org/10.1080/2150704X.2023.2242589

    Kitov, E. P., & Al farabi, O. (2024). Aral Sea Saka tribes study based on Egistic Mausoleum materials [Саки Приаралья по палеоантропологическим материалам из мавзолея Егистик]. Ufa Archaeological Herald, 24(2), 373–387. https://doi.org/10.31833/uav/2024.24.2.022

    Kulikov, Y., Sambayev, N., Pavlenko, A., Isbekov, K., & Barakbayev, T. (2024). Ways of optimizing the fishery in the Small Aral Sea, taking into account the biotopic distribution of fish fauna. AACL Bioflux, 17(4), 1749–1761.

    Kurbanov, D., Mylsamy, S., Zhou, B., Babayev, Z., Bazarbayev, R., Allaniyazov, A., Balakumar, S., Zeng, G., Yakubov, K., & Karazhanov, S. (2024). Investigation of the composition and morphology of raw materials from the Aral Sea region. Zeitschrift für Physikalische Chemie, 238(11), 2055–2074. https://doi.org/10.1515/zpch-2023-0401

    Kuzmichyova, T. F. (2023). On filling of the eastern part of the former Aral Sea due to water discharge through the Kokaral Dam from analysis of Aqua/Terra satellite images [О заполнении восточной части бывшего Аральского моря за счёт сброса вод через Кокаральскую плотину на основе анализа снимков, полученных со спутников Aqua/Terra]. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 20(2), 205–215. https://doi.org/10.21046/2070-7401-2023-20-2-205-215

    Levengood, J. M., & Beasley, V. R. (2007). Principles of ecotoxicology. In R. C. Gupta (Ed.), Veterinary toxicology: Basic and clinical principles (pp. 689–708). Academic Press. https://doi.org/10.1016/B978-012370467-2/50154-1

    Li, Y., Saparov, G., Zeng, T., Abuduwaili, J., & Ma, L. (2024). Geochemical behavior of rare earth elements in agricultural soils along the Syr Darya River within the Aral Sea Basin. Environmental Monitoring and Assessment, 196(5), 493. https://doi.org/10.1007/s10661-024-12647-6

    Liu, J., Ding, J., Liu, B., Wu, S., & Han, Z. (2025). Characteristics of salt dust aerosols and their transport implications in the Aral Sea. Scientific Reports, 15(1), 3002. https://doi.org/10.1038/s41598-025-86880-5

    Liu, S., Long, A., Luo, G., Wang, H., Yan, D., & Deng, X. (2024). What drives the distinct evolution of the Aral Sea and Lake Balkhash? Insights from a novel CD-RF-FA method. Journal of Hydrology: Regional Studies, 56, 102014. https://doi.org/10.1016/j.ejrh.2024.102014

    Lloyd, S., Nakamura, T., & Masuda, S. (2023). Public perceptions of the Aral Sea disaster in Uzbekistan. Journal of Disaster Research, 18(7), 783–795. https://doi.org/10.20965/jdr.2023.p0783

    Lopes, R. M., Hauser-Davis, R. A., Oliveira, M. M., Pierini, M. F., de Souza, C. A. M., Cavalcante, A. L. M., Santos, C. R. D., Comarú, M. W., & da Fonseca Tinoca, L. A. (2020). Principles of problem-based learning for training and professional practice in ecotoxicology. Science of the Total Environment, 702, Article 134809. https://doi.org/10.1016/j.scitotenv.2019.134809

    Ma, X., Huang, S., Huang, Y., Wang, X., & Luo, Y. (2024). Evaporation from the hypersaline Aral Sea in Central Asia. Science of the Total Environment, 908, 168412. https://doi.org/10.1016/j.scitotenv.2023.168412

    Mayar, M. A., Hamidov, A., Akramkhanov, A., & Helming, K. (2024). Consideration of the environment in water–energy–food nexus research in the Aral Sea Basin. Water, 16(5), 658. https://doi.org/10.3390/w16050658

    Moiseenko, T. I. (2008). Aquatic ecotoxicology: Theoretical principles and practical application. Water Resources, 35(5), 530–541. https://doi.org/10.1134/S0097807808050047

    Munisov, Z., & Borowy, I. (2023). A narrative analysis: Tragic images of the Aral Sea in the Russophone ecopoems. Central Asian Survey, 42(2), 238–253. https://doi.org/10.1080/02634937.2022.2154315

    Muñoz, C., Charles, S., McVey, E. A., & Vermeiren, P. (2023). The ATTAC guiding principles to openly and collaboratively share wildlife ecotoxicology data. MethodsX, 10, Article 101987. https://doi.org/10.1016/j.mex.2022.101987

    Novikova, N. M., Kuz’mina, Z. V., & Mamutov, N. K. (2023). Desertification of the Amu Darya River Delta and vegetation dynamics in the conditions of the Aral Sea crisis. Arid Ecosystems, 13(4), 371–385. https://doi.org/10.1134/S2079096123040108

    Nurgaliyev, N., Tokhetova, L., Demesinova, A., Zhalbyrov, A., Zhapparbekov, N., & Shalabaeva, G. (2024). Assessment of African millet (Pennisetum glaucum L.) germplasm in the Aral Sea region, Kazakhstan. SABRAO Journal of Breeding and Genetics, 56(6), 2260–2272. https://doi.org/10.54910/sabrao2024.56.6.8

    Panin, A. V., Ludikova, A. V., Sapelko, T. V., Uspenskaya, O. N., Borisova, O. K., Zagorulko, V. A., & Utkina, A. O. (2024). New data on the Pleistocene history of the Aral Sea-Lake. Limnology and Freshwater Biology, 7(4), 568–573. https://doi.org/10.31951/2658-3518-2024-A-4-568

    Pastorino, P., Prearo, M., & Barceló, D. (2024). Ethical principles and scientific advancements: In vitro, in silico, and non-vertebrate animal approaches for a green ecotoxicology. Green Analytical Chemistry, 8, Article 100096. https://doi.org/10.1016/j.greeac.2024.100096

    Plotnikov, I. S., Aladin, N. V., Zhakova, L. V., Mossin, J., & Høeg, J. T. (2023). Past, present and future of the Aral Sea—A review of its fauna and flora before and during the regression crisis. Zoological Studies, 62, 19. https://doi.org/10.6620/ZS.2023.62-19

    Ramazonov, B., Mutalov, K., Egamberdiyeva, L., Atabayeva, D., Abdurashitova, Y., & Allanazarova, I. (2024). Growing salt-resistant flora under natural conditions of the Kyzyl-Kum Desert and arid bed of Aral Sea, Uzbekistan. SABRAO Journal of Breeding and Genetics, 56(5), 1895–1905. https://doi.org/10.54910/sabrao2024.56.5.13

    Rustamova, I., Primov, A., Karimov, A. [Aziz], Khaitov, B., & Karimov, A. [Akmal]. (2023). Crop diversification in the Aral Sea region: Long-term situation analysis. Sustainability, 15(13), 10221. https://doi.org/10.3390/su151310221

    Ruzmetova, A., Babaev, Z., & Yunusov, M. (2023). Preparation and investigation of a heat-resistant binder with a metakaolin additive made of Aral Sea raw materials. Refractories and Industrial Ceramics, 64(4), 383–387. https://doi.org/10.1007/s11148-024-00857-x

    Saidmamatov, O., Saidmamatov, O., Sobirov, Y., Marty, P., Ruzmetov, D., Berdiyorov, T., Karimov, J., Ibadullaev, E., Matyakubov, U., & Day, J. (2024a). Nexus between life expectancy, CO₂ emissions, economic development, water, and agriculture in Aral Sea Basin: Empirical assessment. Sustainability (Switzerland), 16(7), 2647. https://doi.org/10.3390/su16072647

    Saidmamatov, O., Sobirov, Y., Makhmudov, S., Marty, P., Yusupova, S., Ibadullaev, E., & Toshnazarova, D. (2024b). Dynamics of human fertility, environmental pollution, and socio-economic factors in Aral Sea Basin. Economies, 12(10), 272. https://doi.org/10.3390/economies12100272

    Satybaldiyev, B., Ismailov, B., Nurpeisov, N., Kenges, K., Snow, D. D., Malakar, A., Taukebayev, O., & Uralbekov, B. (2023a). Downstream hydrochemistry and irrigation water quality of the Syr Darya, Aral Sea Basin, South Kazakhstan. Water Supply, 23(5), 2119–2134. https://doi.org/10.2166/ws.2023.114

    Satybaldiyev, B., Ismailov, B., Nurpeisov, N., Kenges, K., Snow, D. D., Malakar, A., & Uralbekov, B. (2023b). Evaluation of dissolved and acid-leachable trace element concentrations in relation to practical water quality standards in the Syr Darya, Aral Sea Basin, South Kazakhstan. Chemosphere, 313, 137465. https://doi.org/10.1016/j.chemosphere.2022.137465

    Sherimbetov, A., Sherimbetov, S., Adilov, B., Ruzmetov, D., & Shavkiev, J. (2024). Rapid detection of Alternaria spp. by PCR in the newly created forest plantations on the drained bottom of the Aral Sea. Regulatory Mechanisms in Biosystems, 15(2), 361–366. https://doi.org/10.15421/022451

    Shukurov, I. S., Shukurova, L. I., & Marakulina, S. P. (2024). Problems of desertification and dustiness of atmospheric air in arid cities of the Aral Sea region. Arid Ecosystems, 14(3), 369–375. https://doi.org/10.1134/S207909612470032X

    Šimonovičová, A., Pauditšová, E., Nosalj, S., Oteuliev, M., Klištincová, N., Maisto, F., Kraková, L., Pavlović, J., Šoltys, K., & Pangallo, D. (2024). Fungal and prokaryotic communities in soil samples of the Aral Sea dry bottom in Uzbekistan. Soil Systems, 8(2), 58. https://doi.org/10.3390/soilsystems8020058

    Sokolova, E. A., Sadullaev, O. K., Samandarova, B. S., & Ilinskaya, O. N. (2024). The structure of the incidence of acute intestinal infections in children of the Southern Aral Sea region and bioimmune correction of intestinal microbiocenosis in shigellosis [Структура заболеваемости острыми кишечным инфекциями детей Южного Приаралья и биоиммунная коррекция микробиоценоза кишечника при шигеллёзе]. Kazan Medical Journal, 105(2), 205–213. https://doi.org/10.17816/KMJ108941

    Song, Y., Xun, X., Zheng, H., Chen, X., Bao, A., Liu, Y., Luo, G., Lei, J., Xu, W., Liu, T., Hellwich, O., & Guan, Q. (2024). Modeling and locating the wind erosion at the dry bottom of the Aral Sea based on an InSAR temporal decorrelation decomposition model. Remote Sensing, 16(10), 1800. https://doi.org/10.3390/rs16101800

    Suleimen, A., Rakhimova, B., Jangildinova, S., Aitkulov, A., Yessilbayeva, B., Dyussenbekova, B., Danilenko, M., & Beygam, N. (2024). Assessment of the influence of dust-salt aerosols of the Aral Sea on the morphological characteristics of the tissue of the epididymis of rats in the experiment. OnLine Journal of Biological Sciences, 24(4), 739–746. https://doi.org/10.3844/ojbsci.2024.739.746

    Sultonov, Z., & Pant, H. K. (2023). Potential impacts of climate change on water management in the Aral Sea Basin. Water Resources Management, 37(14), 5743–5757. https://doi.org/10.1007/s11269-023-03627-5

    Tejetdinova, D. M., Esemuratova, R. X., Saitova, A. K., & Begdullaeva, G. S. (2023). A synopsis of the genus Asparagus L. in the territory of the southern Aral Sea. Iranian Journal of Botany, 29(1), 40–46. https://doi.org/10.22092/ijb.2023.129426

    Timur, B. (2023). Spatio-temporal variations of climate variables and extreme indices over the Aral Sea Basin during 1960–2017. Trends in Sciences, 20(12), 5664. https://doi.org/10.48048/tis.2023.5664

    Touge, Y., Kobayashi, G., Khujanazarov, T., & Tanaka, K. (2024). Reproduction of historical water balance in the Aral Sea Basin: The physically-based framework to quantify water consumption components in endorheic lake. Journal of Hydrology, 640, 131711. https://doi.org/10.1016/j.jhydrol.2024.131711

    Truhaut, R. (1977). Ecotoxicology: Objectives, principles and perspectives. Ecotoxicology and Environmental Safety, 1(2), 151–173. https://doi.org/10.1016/0147-6513(77)90033-1

    Turdimambetov, I., Murgaš, F., Victor, F., Oteuliev, M., Madreimov, A., Shamuratova, G., Atabayev, S., & Reymov, A. (2024). Measurement of environmental indicators of the quality of life in a region with extreme climatic conditions: Evidence from around the Aral Sea. Geojournal of Tourism and Geosites, 57, 1941–1951. https://doi.org/10.30892/gtg.574spl08-1361

    Turzhova, E. B., Sorokoletova, E. F., Popov, V. B., Sukhov, Y. Z., & Bakina, V. N. (1993). Main methodological principles of biological express assessment in ecotoxicology. Meditsina Truda i Promyshlennaya Ekologiya, (7–8), 40–43.

    Walker, C. H., Sibly, R. M., Hopkin, S. P., & Peakall, D. B. (2016). Principles of ecotoxicology (4th ed., pp. 1–353). CRC Press. https://doi.org/10.1201/b11767

    Wang, M., Chen, X., Cao, L., Kurban, A., Shi, H., Wu, N., Eziz, A., Yuan, X., & De Maeyer, P. (2023a). Correlation analysis between the Aral Sea shrinkage and the Amu Darya River. Journal of Arid Land, 15(7), 757–778. https://doi.org/10.1007/s40333-023-0062-z

    Wang, X., Zhang, J., Wang, S., Ge, Y., Duan, Z., Sun, L., Meadows, M. E., Luo, Y., Fu, B., Chen, X., Huang, Y., Ma, X., & Abuduwaili, J. (2023b). Reviving the Aral Sea: A hydro-eco-social perspective. Earth's Future, 11(11), e2023EF003657. https://doi.org/10.1029/2023EF003657

    Wang, X., Cui, B., Chen, Y., Feng, T., Li, Z., & Fang, G. (2024). Dynamic changes in water resources and comprehensive assessment of water resource utilization efficiency in the Aral Sea Basin, Central Asia. Journal of Environmental Management, 353, 120198. https://doi.org/10.1016/j.jenvman.2024.120198

    Wen, Z., Jiang, D., Jing, Y., & Liu, G. (2023). Remote sensing classification approach to large-scale crop cultivation identification: A case study of the Aral Sea Basin. Transactions in GIS, 27(8), 2278–2296. https://doi.org/10.1111/tgis.13120

    Wheeler, W. 2021. Environment and Post-Soviet Transformation in Kazakhstan’s Aral Sea Region: Sea changes. London: UCL Press. https://doi.org/10.14324/111.9781800080331

    Wicaksono, W. A., Egamberdieva, D., Cernava, T., & Berg, G. (2023). Viral community structure and potential functions in the dried-out Aral Sea Basin change along a desiccation gradient. mSystems, 8(1). https://doi.org/10.1128/msystems.00994-22

    Wu, M., Qiao, J., Zhang, Y., Tian, C., Li, Y., Hao, Y., Zhang, X., Wang, L., & He, J. (2023). Ecological governance of Aral Sea: Important way to deepen scientific and technological cooperation with Central Asia. Bulletin of Chinese Academy of Sciences, 38(6), 917–931. https://doi.org/10.16418/j.issn.1000-3045.20221103003

    Yang, S., Sun, L., He, J., Li, C., & Yu, Y. (2024). Evolution of the Aral Sea: Crisis and present situation. Arid Land Geography, 47(2), 181–191.

    Yue, B., Chen, X., Li, S., Du, Z., Wilson, J., Yang, J., Jiao, Y., Huang, S., & Zhou, C. (2024). A four-band index for both liquid and solid water and its applications in the Aral Sea Basin. Science China Earth Sciences, 67(3), 769–788. https://doi.org/10.1007/s11430-023-1252-9

    Zhang, P., Wang, J., Huang, L., He, M., Yang, H., Song, G., Zhao, J., & Li, X. (2023). Microplastic transport during desertification in drylands: Abundance and characterization of soil microplastics in the Amu Darya–Aral Sea Basin, Central Asia. Journal of Environmental Management, 348, 119353. https://doi.org/10.1016/j.jenvman.2023.119353

    Zhou, J., Ke, L., Ding, X., Wang, R., & Zeng, F. (2024). Monitoring spatial–temporal variations in river width in the Aral Sea Basin with Sentinel-2 imagery. Remote Sensing, 16(5), 822. https://doi.org/10.3390/rs16050822