Background: Euryale ferox Salisb. (commonly known as makhana or foxnut) is an aquatic plant widely consumed for its nutritional and therapeutic value in traditional medicine. However, its bioactive components, responsible for the plethora of benefits it possesses for mankind, remain elusive.
Methods: Thus, in this study, we explored the bioactive components of foxnut extract by employing ultra-high-pressure liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) to comprehensively profile the components.
Results: Our results showed that over 3000 compounds were initially detected and annotated, of which around 40 were selected based on spectral database comparisons. Out of all, fifteen bioactive metabolites were prioritized and classified into five therapeutic categories: vitamins, cardio-renal and anti-diabetic agents, anti-cancer, antioxidant, and anti-inflammatory compounds, neuroprotective agents, and reproductive health modulators. Notable compounds included thiamine, agmatine, betulin, docosahexaenoic acid (DHA), and testosterone undecanoate, all supported by literature evidence for their health-promoting roles.
Conclusion: These findings provide the detailed metabolite map of Euryale ferox and highlight its potential as a natural reservoir of pharmacologically relevant compounds for functional food and nutraceutical development.
Foxnut, bioactive, metabolites, functional food, plant-based therapeutics, mass spectrometry
Al-Baiaty, F. D. R., Ismail, A., Abdul Latiff, Z., Muhammad Nawawi, K. N., Raja Ali, R. A., & Mokhtar, N. M. (2021). Possible Hepatoprotective Effect of Tocotrienol-Rich Fraction Vitamin E in Non-alcoholic Fatty Liver Disease in Obese Children and Adolescents. Frontiers in Pediatrics, 9. https://doi.org/10.3389/fped.2021.667247
Biţă, A., Scorei, I. R., Ciocîlteu, M. V., Nicolaescu, O. E., Pîrvu, A. S., Bejenaru, L. E., Rău, G., Bejenaru, C., Radu, A., Neamţu, J., Mogoşanu, G. D., & Benner, S. A. (2023). Nicotinamide Riboside, a Promising Vitamin B3 Derivative for Healthy Aging and Longevity: Current Research and Perspectives. Molecules, 28(16), 6078. https://doi.org/10.3390/molecules28166078
Chandrakumar, A., Bhardwaj, A., & ‘t Jong, G. W. (2018). Review of thiamine deficiency disorders: Wernicke encephalopathy and Korsakoff psychosis. Journal of Basic and Clinical Physiology and Pharmacology, 30(2), 153–162. https://doi.org/10.1515/jbcpp-2018-0075
Drąg-Zalesińska, M., Drąg, M., Poręba, M., Borska, S., Kulbacka, J., & Saczko, J. (2017). Anticancer properties of ester derivatives of betulin in human metastatic melanoma cells (Me-45). Cancer Cell International, 17(1). https://doi.org/10.1186/s12935-016-0369-3
Hong, M., Kim, J.-H., Han, J.-H., Ryu, B.-R., Lim, Y.-S., Lim, J.-D., Park, S.-H., Kim, C.-H., Lee, S.-U., & Kwon, T.-H. (2023). In Vitro and In Vivo Anti-Inflammatory Potential of Cannabichromene Isolated from Hemp. Plants, 12(23), 3966. https://doi.org/10.3390/plants12233966
Iqbal, S., & Matsabisa, M. (2024). In silico investigation of cannabinoids from Cannabis sativa leaves as a potential anticancer drug to inhibit MAPK-ERK signaling pathway and EMT induction. In Silico Pharmacology, 12(1). https://doi.org/10.1007/s40203-024-00213-4
Ivie, G. W. (1978). Toxicological Significance of Plant Furocoumarins. In Effects of Poisonous Plants on Livestock (pp. 475–485). Elsevier. https://doi.org/10.1016/b978-0-12-403250-7.50052-2
Jana, B. R., Kumar, M., & Raut, S. M. (2024). Antidiabetic biomolecules and nutrient elements in Makhana (Euryale ferox Salisb.). Annals of Phytomedicine An International Journal, 13(2). https://doi.org/10.54085/ap.2024.13.2.52
Jha, V., Shalini, R., Kumari, A., Jha, P., & Sah, N. K. (2018). Aquacultural, Nutritional and Therapeutic Biology of Delicious Seeds of Euryale ferox Salisb. : A Minireview. Current Pharmaceutical Biotechnology, 19(7), 545–555. https://doi.org/10.2174/1389201019666180808160058
Jiang, J., Ou, H., Chen, R., Lu, H., Zhou, L., & Yang, Z. (2023). The Ethnopharmacological, Phytochemical, and Pharmacological Review of Euryale ferox Salisb.: A Chinese Medicine Food Homology. Molecules, 28(11), 4399. https://doi.org/10.3390/molecules28114399
Joseph, A., & Ramesh, G. (2023). Nutrient Analysis, Phytochemical and Antioxidant Activity of a Food Product Formulated with Fox Nuts (Euryale ferox). Asian Journal of Biological and Life Sciences, 12(2), 279–285. https://doi.org/10.5530/ajbls.2023.12.38
Kamel, F. O., Shagroud, O., Ahmad, M. A. A. A. S., Abd El-Aziz, G. S., Burzangi, A. S., Bakhshwin, D., Jamal, M., & Karim, S. (2024). Agmatine ameliorates diabetes type 2-induced nephropathy in rats. Asian Pacific Journal of Tropical Biomedicine, 14(1), 8–16. https://doi.org/10.4103/2221-1691.393580
Kim, H.-Y., Huang, B. X., & Spector, A. A. (2022). Molecular and Signaling Mechanisms for Docosahexaenoic Acid-Derived Neurodevelopment and Neuroprotection. International Journal of Molecular Sciences, 23(9), 4635. https://doi.org/10.3390/ijms23094635
Klahr, S., & Morrissey, J. (2004). L-arginine as a therapeutic tool in kidney disease. Seminars in Nephrology, 24(4), 389–394. https://doi.org/10.1016/j.semnephrol.2004.04.010
Kumar, R., Singh, I. S., & Jha, V. (2025). Bioactive compounds in Euryale ferox Salisb. and their nutritional and therapeutic actions-a review. Vegetos. https://doi.org/10.1007/s42535-025-01209-x
Kumari, A., & Jha, V. (2018). Ethnic uses of Makhana (Euryale ferox Salisb.) in Mithila (north Bihar) and other parts of India. Journal of Traditional and Folk Practices. https://doi.org/10.25173/jtfp.2017.5.1.65
Liu, Y., Zhang, Y., Muema, F. W., Kimutai, F., Chen, G., & Guo, M. (2021). Phenolic Compounds from Carissa spinarum Are Characterized by Their Antioxidant, Anti-Inflammatory and Hepatoprotective Activities. Antioxidants, 10(5), 652. https://doi.org/10.3390/antiox10050652
Lonsdale, D. (2006). A Review of the Biochemistry, Metabolism and Clinical Benefits of Thiamin(e) and Its Derivatives. Evidence-Based Complementary and Alternative Medicine, 3(1), 49–59. https://doi.org/10.1093/ecam/nek009
Matejczyk, M., Ofman, P., Juszczuk-Kubiak, E., Świsłocka, R., Shing, W. L., Kesari, K. K., Prakash, B., & Lewandowski, W. (2024). Biological effects of vanillic acid, iso-vanillic acid, and orto-vanillic acid as environmental pollutants. Ecotoxicology and Environmental Safety, 277, 116383. https://doi.org/10.1016/j.ecoenv.2024.116383
Merdivan, S., & Lindequist, U. (2017). Ergosterol Peroxide: A Mushroom-Derived Compound with Promising Biological Activities-A Review. International Journal of Medicinal Mushrooms, 19(2), 93–105. https://doi.org/10.1615/intjmedmushrooms.v19.i2.10
Milaeva, E. R., Nikitin, E. A., Shpakovsky, D. B., Pryakhin, A. D., Antonenko, T. A., Tyurin, V. Y., Kazak, A. A., Ulyanov, A. N., Tafeenko, V. A., Aslanov, L. A., Dubova, L. G., Lysova, E. A., & Shevtsova, E. F. (2020). Antioxidant activity of modified 2,6-Di-tert-butylphenols with pyridine moiety. Pharmacy & Pharmacology International Journal, 8(3), 122–134. https://doi.org/10.15406/ppij.2020.08.00288
Muñoz-Jurado, A., Escribano, B. M., Galván, A., Valdelvira, M. E., Caballero-Villarraso, J., Giraldo, A. I., Santamaría, A., Luque, E., Agüera, E., LaTorre, M., & Túnez, I. (2024). Neuroprotective and antioxidant effects of docosahexaenoic acid (DHA) in an experimental model of multiple sclerosis. The Journal of Nutritional Biochemistry, 124, 109497. https://doi.org/10.1016/j.jnutbio.2023.109497
Noh, J.-M., Kwak, S.-Y., Seo, H.-S., Seo, J.-H., Kim, B.-G., & Lee, Y.-S. (2009). Kojic acid–amino acid conjugates as tyrosinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 19(19), 5586–5589. https://doi.org/10.1016/j.bmcl.2009.08.041
Parra, M., Stahl, S., & Hellmann, H. (2018). Vitamin B6 and its role in cell metabolism and physiology. Cells, 7(7), 84. https://doi.org/10.3390/cells7070084
Rabe, E. F. (1956). Pyridoxine hydrochloride (Vitamin B6) need in infants and children. A.M.A. Journal of Diseases of Children, 92(4), 382. https://doi.org/10.1001/archpedi.1956.02060030376007
Rafi, H., Rafiq, H., & Farhan, M. (2024). Pharmacological profile of agmatine: An in-depth overview. Neuropeptides, 105, 102429. https://doi.org/10.1016/j.npep.2024.102429
Salem, N., Jr., Litman, B., Kim, H., & Gawrisch, K. (2001). Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids, 36(9), 945–959. https://doi.org/10.1007/s11745-001-0805-6
Sepulveda, D. E., Vrana, K. E., Kellogg, J. J., Bisanz, J. E., Desai, D., Graziane, N. M., & Raup-Konsavage, W. M. (2024). The Potential of Cannabichromene (CBC) as a Therapeutic Agent. The Journal of Pharmacology and Experimental Therapeutics, 391(2), 206–213. https://doi.org/10.1124/jpet.124.002166
Shaw, R., Das, S., & Chaube, R. (2025). Reproductive health benefits of Euryale ferox Salisb.: a short comprehensive review. Journal of Endocrinology and Reproduction, 183–190. https://doi.org/10.18311/jer/2024/44756
Shaw, R., Deep, S., Jha, V., & Chaube, R. (2025). Euryale Ferox Salisb. Ameliorates cadmium-induced testicular and hepatic impairments in male mouse model. International Journal of Biological Innovations, 07(01), 54–65. https://doi.org/10.46505/ijbi.2025.7107
Shoyama, Y., Hirano, H., Oda, M., Somehara, T., & Nishioka, I. (1975). Cannabichromevarin and cannabigerovarin, two new propyl homologues of cannabichromene and cannabigerol. Chemical and Pharmaceutical Bulletin, 23(8), 1894–1895. https://doi.org/10.1248/cpb.23.1894
Swerdloff, R. (2020). Corrigendum for: “A new oral testosterone undecanoate formulation restores testosterone to normal concentrations in hypogonadal men.” The Journal of Clinical Endocrinology & Metabolism, 105(12), e4984–e4984. https://doi.org/10.1210/clinem/dgaa662
Taniguchi, A., & Watanabe, T. (2007). Roles of biotin in growing ovarian follicles and embryonic development in domestic fowl. Journal of Nutritional Science and Vitaminology, 53(6), 457–463. https://doi.org/10.3177/jnsv.53.457
Turza, A., Pascuta, P., Mare, L., Borodi, G., & Popescu, V. (2023). Structural insights and intermolecular energy for some medium and long-chain testosterone esters. Molecules, 28(7), 3097. https://doi.org/10.3390/molecules28073097