Journal of Innovative Agriculture, Volume 7, Issue 2 : 1-4. Doi : 10.37446/jinagri/7.2.2020.1-4
Research Article

OPEN ACCESS | Published on : 30-Jun-2020

Conservation and management in genetic resources of biofuel crops

  • M Paramathma
  • Forest College and Research Institute, Tamil Nadu Agricultural University, Mettupalayam, Tamil Nadu, India.
  • P Jayamani
  • Forest College and Research Institute, Tamil Nadu Agricultural University, Mettupalayam, Tamil Nadu, India.
  • KT Parthiban
  • Forest College and Research Institute, Tamil Nadu Agricultural University, Mettupalayam, Tamil Nadu, India.
  • M Kiruba
  • Forest College and Research Institute, Tamil Nadu Agricultural University, Mettupalayam, Tamil Nadu, India.

Abstract

Biomass is emerging as one of the promising environmentally friendly renewable energy options if the major conventional energy sources like petroleum oil, coal and gas become depleted. Biomass can be converted into liquid and gaseous fuels through thermochemical and biological methods. Fuels produced from these technologies are referred to as biofuels. It is generally held that biofuels offer many benefits over conventional petroleum fuels, including availability from locally available biomass sources, reduction of greenhouse gas emission, biodegradability, and contributing to sustainability. However, Biofuels contain oxygen levels of 10–45% by mass while petroleum has essentially none. This makes the chemical properties of biofuel more favorable for complete combustion. In addition, biofuels from all sources have very low sulphur content and many have a low nitrogen level which make them more eco-friendly. As a consequence, biodiesel is widely used as an alternative fuel for diesel engines, whereas ethanol is used to replace gasoline.

Keywords

conservation, biofuel, biomass, energy, genetic resources

References

  • Ambasta, S.P. The useful plants in India CSIR-New Delhi, (1992), pp.303.

    Baran Jha, T., Mukherjee, P., & Datta, M. M. (2007). Somatic embryogenesis in Jatropha curcas Linn., an important biofuel plant. Plant Biotechnology Reports1(3), 135-140.

    Berchmans, H. J., & Hirata, S. (2008). Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresource technology99(6), 1716-1721.

    Bradsher, K. (2008). The other oil shock: vegetable oil prices soar. International Herald Tribune.

    Carvalho, C. R., Clarindo, W. R., Praça, M. M., Araújo, F. S., & Carels, N. (2008). Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Science174(6), 613-617.

    Das, B., & Venkataiah, B. (2001). A minor coumarino-lignoid from Jatropha gossypifolia. Biochemical Systematics and Ecology29(2), 213-214.

    Dehgan, B. (1984). Phylogenetic significance of interspecific hybridization in Jatropha (Euphorbiaceae). Systematic Botany, 467-478.

    Demirbas, A. (2007). Progress and recent trends in biofuels. Progress in energy and combustion science33(1), 1-18.

    Deore, A. C., & Johnson, T. S. (2008). High-frequency plant regeneration from leaf-disc cultures of Jatropha curcas L.: an important biodiesel plant. Plant Biotechnology Reports2(1), 7-11.

    Deore, A. C., & Johnson, T. S. (2008). High-frequency plant regeneration from leaf-disc cultures of Jatropha curcas L.: an important biodiesel plant. Plant Biotechnology Reports2(1), 7-11.

    Dhakshanamoorthy, D., & Selvaraj, R. (2009). Extraction of genomic DNA from Jatropha sp. using modified CTAB method. Rom J Biol Plant Biol54, 117-25.

    Gübitz, G. M., Mittelbach, M., & Trabi, M. (1999). Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresource technology67(1), 73-82.

    Heller, J. (1996). Physic nut, Jatropha curcas L (Vol. 1). Bioversity international.

    Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and sustainable energy reviews16(1), 143-169.

    Holser, R. A., & Harry-O’Kuru, R. (2006). Transesterified milkweed (Asclepias) seed oil as a biodiesel fuel. Fuel85(14-15), 2106-2110.

    Jones, N., & Miller, J. H. (1991). Jatropha curcas, a multipurpose species for problematic sites. Land Resource Series No. 1. The World Bank Asia Technical Department. Agriculture Division.

    Kaul, S., Saxena, R. C., Kumar, A., Negi, M. S., Bhatnagar, A. K., Goyal, H. B., & Gupta, A. K. (2007). Corrosion behavior of biodiesel from seed oils of Indian origin on diesel engine parts. Fuel processing technology88(3), 303-307.

    Kumar, N., Anand, K. V., Pamidimarri, D. S., Sarkar, T., Reddy, M. P., Radhakrishnan, T., ... & Sopori, S. K. (2010). Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants. Industrial Crops and Products32(1), 41-47.

    Li, M., Li, H., Jiang, H., Pan, X., & Wu, G. (2008). Establishment of an Agrobacteriuim-mediated cotyledon disc transformation method for Jatropha curcas. Plant Cell, Tissue and Organ Culture92(2), 173-181.

    Misra, M. &Misra, A.N. , Genetic transformation of grass pea. In: DAE Symposium on Photosynth. & Plant Molecular Biology, BRNS/ DAE, Govt. of India, May 1993, pp. 246-251.

    Misra, M., Addis, G., & Narayan, R. K. J. (1994). htMethods for callus induction and differentiation of Lathyrus sativus and embryo rescue in interspecific crosses by tissue culture. Journal of the Agricultural Society-University of Wales (United Kingdom).

    Mujumdar, A. M., & Misar, A. V. (2004). Anti-inflammatory activity of Jatropha curcas roots in mice and rats. Journal of ethnopharmacology90(1), 11-15.

    Openshaw, K. (2000). A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass and bioenergy19(1), 1-15.

    Paramathma M. (2020). Genetic interaction of physiological traits in Eucalyptus species. Journal of Innovative Agriculture, 7(1), 5-8. https://doi.org/10.37446/jinagri/7.1.2020.5-8

    Patnaik, D., Vishnudasan, D., & Khurana, P. (2006). Agrobacterium-mediated transformation of mature embryos of Triticum aestivum and Triticum durum. Current science, 307-317.

    Paz, M. M. M., & Wang, K. (2009). U.S. Patent No. 7,473,822. Washington, DC: U.S. Patent and Trademark Office.

    Purkayastha, J., Sugla, T., Paul, A., Solleti, S. K., Mazumdar, P., Basu, A., ... & Sahoo, L. (2010). Efficient in vitro plant regeneration from shoot apices and gene transfer by particle bombardment in Jatropha curcas. Biologia Plantarum54(1), 13-20.

    Raadnui, S., & Meenak, A. (2003). Effects of refined palm oil (RPO) fuel on wear of diesel engine components. Wear254(12), 1281-1288.

    Rashid, U., & Anwar, F. (2008). Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel87(3), 265-273.

    Reijnders, L. (2006). Conditions for the sustainability of biomass based fuel use. Energy policy34(7), 863-876.

    Shrivastava, S., & Banerjee, M. (2008). In vitro clonal propagation of physic nut (Jatropha curcas L.): Influence of additives. International Journal of Integrative Biology3(1), 73-79.

    Sujatha, M., & Mukta, N. (1996). Morphogenesis and plant regeneration from tissue cultures of Jatropha curcas. Plant Cell, Tissue and Organ Culture44(2), 135-141.

    Sujatha, M., Makkar, H. P. S., & Becker, K. (2005). Shoot bud proliferation from axillary nodes and leaf sections of non-toxic Jatropha curcas L. Plant growth regulation47(1), 83-90.

    Terry, B. (2005). Impact of biodiesel on fuel system component durability (No. NREL/TP-540-39130). National Renewable Energy Lab.(NREL), Golden, CO (United States).

    Tiwari, S., & Tuli, R. (2009). Multiple shoot regeneration in seed-derived immature leaflet explants of peanut (Arachis hypogaea L.). Scientia Horticulturae121(2), 223-227.