Journal of Innovative Agriculture, Volume 9, Issue 3 : 1-11. Doi : 10.37446/jinagri/rsa/9.3.2022.1-11
Research Article

OPEN ACCESS | Published on : 30-Sep-2022

Management of root knot nematode in tomato through Trichoderma harzianum and moringa leaf extract

  • Belay Feyisa
  • Ethiopian Institute of Agricultural Research (EIAR), Ambo Agricultural Research Centre, Ambo, Ethiopia.
  • Gemechu Kebede
  • Ethiopian Institute of Agricultural Research (EIAR), Ambo Agricultural Research Centre, Ambo, Ethiopia.
  • Fikremariam Yimer
  • Ethiopian Institute of Agricultural Research (EIAR), Ambo Agricultural Research Centre, Ambo, Ethiopia.

Abstract

To assess the impact of Moringa and T. harzianum on managing Root Knot Nematode (M. incognita) in tomato and to ascertain the impact of combining Moringa and T. harzianum on (M. incognita) management in tomato, an experiment was carried out at the Ambo Agricultural Research Center in a greenhouse. Combinations of Moringa oleifera and T. harzianum were examined on plant parameters and M. incognita parameters on tomato plants at various concentrations of moringa plant extracts at(100%, 50%, 25%, 10%) and (1*104, 1*106, 1*108, 1*1010), respectively. The results showed that were significant variations (P0.05) on number of galls per plant, the number of egg masses per plant, final nematode population density per pot, and the reproduction factor among the treatments in terms of nematode population. Combined application of aqueous moringa plant extracts at S (100 percent) and T. harzianum at 1*1010spore/ml resulst showed the highest plant height 67.5 cm. The outcome showed those pots treated with aqueous moringa plant extracts S and T. harzianum 1*1010Spore/ml had the lowest mean reproduction factor (1.79) and population density (3588) compared to control. Pots treated with aqueous moringa plant extracts S/10 (10%) and T.harzianum 1*104Spore/ml had the highest mean reproduction factor and nematodes population density compared to the control. As a result, T. harzianum and M. oleifera could be utilized to combat M. incognita in the field. The findings of this study showed that test plants can lower nematode populations below economic thresholds and are easily accessible to farmers at no cost. Additional research is required to find new classes of bio-pesticides derived from natural plants that can take the place of the synthetic chemicals now in use.

Keywords

aqueous, bio-pesticide, moringa, root knot nematode, Trichoderma harzianum

References

  • Abawi, G.S., & Widmer, T.L. (2000). Impact of soil health management practices on soilborne pathogens, 771 nematodes and root diseases of vegetable crops. Appl. Soil Ecol, 15, 37-47.

    Abdallah, M., Elgorban, Mohamed A., Abdel-Wahab, Ali, H., Bahkali, Basheer, A., Al-Sum (2013). Biocontrol of M. javanica on Tomato Plants by Hypocrea lixii (the Teleomorph of Trichoderma harzianum). Clean – Soil, Air, Water, 42 (10), 1464–1469.

    Adegbite, A.A., & Adesiyan, S.O. (2005). Root extracts of plants to control root knot nematodes on edible soyabean. World J. agric. Sci., 1,18-21.

    Agrios, G.N. (2005). Plant pathology (5th edition). Elsevier academic press.

    Akhtar, M., & Malik, A. (2000). Roles of organic soil amendments and soil organisms in the biological control of plant parasitic nematodes. A review. Bioresource Technol., 74,35-47.

    Anwar, S.A., Zia, A., Hussain, M. & Kamran, M. (2007). Host suitability of selected plants to
    Meloidogyne incognita in the Punjab, Pakistan. International Journal of Nematology, 17, 144-150. 

    Anwar, S.A., & Mckenry, M.V. (2010). Incidence and reproduction of Meloidogyne incognita on vegetable crop genotypes. Pakistan J. Zool., 42,135-141.

    Belay, F., Alemu, L., Thangavel, S., Gezehegne, G. (2019). Effect of Some Botanicals and Trichoderma Harzianum against Root-Knot Nematode Meloidogyne Incognita, Infecting Tomato under Green House. Acad. Res. J. Agri. Sci. Res., 7(5), 238-249.

    Chet, I., & Baker, R. (1981). Induction of suppressiveness to Rhizoctonia solani in soil. Phytopathology, 70, 994-998.

    Claudius-Cole, A.O., Aminu, A.E., & Fawole, B. (2010). Evaluation of plant extracts in the management of root-knot nematode Meloidogyne incognita on cowpea (Vigna unguiculata (L) Walp]. Mycopath, 8, 53-60.

    CSA (Central Statistical Agency). (2016). Report on area and production of crops (Private Peasant Holdings, Meher Season).  The Federal Democratic Republic of Ethiopia Central.

    DE Carvalho, L.M.D., Benda, N.D., Vaughan, M.M., Cabrera, A.R., Hung, K., COX. T., Abdo .Z., Allen ,L.H., & Teal ,P.E.A. (2015). Mi-1-mediated nematode resistance in tomatoes is broken by short-term heat stress but recovers over time. Journal of Nematology, 47, 133-140.

    Heidari, F., Olia, M. (2016).Biological control of root-knot nematode, Meloidogyne javanica, using vermicompost and fungus Trichoderma harzianum on tomato. Iran J Plant Pathol.; 52(1), 109-124.

    Falak, N., Ihsan, U.I., Syed, A., Abduls, S., & Abdur R. (2011). Studies  on  growth,  yield  and  nutritional composition  of  different  tomato  cultivars  Battal Vally  of  district  Mansehra,  Khyber  Pakhtunkhwa, Pakistan.  Sarhad  Journal  of  Agriculture27  (4), 570-571.

    Hafeez, U.K., Riaz, A., Wagar, A., Khan, S.M., & Akhtar, S., 2000. Evaluation of chemical vs. biological control  treatments  against  root-knot nematode (M. incognita) on tomato. Pak. J. Phytopath., 12, 118-120.

    Irshad, U., Mukhtar, T., Ashfaq, M., Kayani, Z., Kayani, S.B., Hanif, M., Aslam, S. (2012). Pathogenicity of citrus nematode Tylenchulus semipenetrans on Citrus Jambhiri. The Journal of Animal and Plant Sciences, 22(4), 1014-1018.

    Javad, N., Gowmen, S.R., Ulhaq, M.I., Abdullah, K., & Shahina, F. (2006). Systemic and persistent effect of neem (Azardirachta indica) formulations against root knot nematodes, Meloidogyne javanica and their storage life. Crop Protection, 26, 911 -916.

    Jinfa, Z., Waddell, C., Sengupta, G.C., Potenza, C., Cantrell, R.G. (2006) Relationships between root-knot nematode resistance and plant growth in upland cotton galling index as a criterion. Crop sci., 46, 1581-86.

    Jones, J.T., Haegeman, A., Danchin, E.G.J., (Gaur, H.S., Helder, J., & Jones, M.G.K., et al., 2013). Top10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14, 946–961.

    Kamran, M., Anwar, S.A., Javed, N., Khan, S.A., & Sahi GM. (2010). Incidence of root-knot nematodes on tomato in Sargodha, Punjab, Pakistan. Pak. J. Nematol., 28, 253-262.

    Khan, M. R., & Sharma, R. K. (2020). Fusarium-nematode wilt disease complexes, etiology and mechanism of development. Ind. Phytopathol., 73, 615–628.

    Kumar, V., Khan, M. R., & Walia R. K.(2020) Crop loss estimations due to plant-parasitic nematodes in major crops in India. National Academy Science Letters, 43, 409-412.

    Meyer, S.L.F., Massoud, S.I., Chitwood, D.J. &  Roberts, D.P. 2000. Evaluation of Trichoderma virens   and   Burkholderia   cepacia   for   antagonistic activity   against   root-knot   nematode,   Meloidogyne incognita. Nematology, 2, 871-879.

    Moens, M., Perry, R.N., & Starr, J.L. (2009). Meloidogyne species – A diverse Group of
    Novel and important plant parasite In: Perry R.N. Moens M, and Starr, J.L (2009) Root knot nematodes. Wallingford Oxford Shire UK CAB International.  230-233.

    Muhammad, M., Nazir, J., Sajid A. K., Hafiz U. K., Huma ,A and Muhammad, K.(2014). Combined Efficacy of Moringa oleifera Leaves and a Fungus, Trichoderma harzianum Against Meloidogyne javanica on Eggplant. Pakistan J. Zool., 46(3), 827-832.

    Neher, D. A., Wu, J., Barberrcheck, M. E., & Anas, O. (2005). Ecosystem types affects interpretation of soil nematode community measures. Applied Soil Ecology 30:47 – 64.

    Oka, I. (2010). Mechanisms of nematode suppression by organic soil amendments—A review. Applied Soil Ecology, 44, 101-115.

    Saifullah., & Thomas, B.J. (1996). Studies on the parasitism of Globodera rostochiensis by Trichoderma harzianum using low temperature scanning electron microscopy. Afro-Asian J. Nematol., 6, 117-122.

    Sasser, J.N., Powers, H.R., & Lucas, G.B. (1957). Effect of root knot nematodes on the expression of black shank resistance in tobacco. Physiopathology, 43, 483-489.

    Sharma, P., & Pandey, R., (2009). Biological Control of Root-Knot Nematode, Meloidogyne incognita in the Medicinal Plant, Withania somnifera and the Effect of Biocontrol Agents on Plant Growth, Afr. J. Agric. Res., 4, 564–567.

    Sharon, E., BAR, E.M., Chet, Herrera, I.E.A., Kleifeld, O., & Spiegel, Y. (2001). Biological control of the root-knot nematode M. javanica by T. harzianum. Phytopathology, 91, 687-693.

    Sharon, E., Chet, I., & Viterbo,  A. (2007). Parasitism of Trichoderma on Meloidogyne javanica and role of the gelatinous matrix. Eur. J. Plant Pathol., 118, 247-258.

    Siddiqui, I.A. & Shaukat, S.S. (2004). Letters Applied Microbiology, 38(2), 169-175.

    Steel, R.G.D., Torrie, J.H. & Dickey, D. (1997). Principles and procedure of statistics. A biometrical approach. 3rd Ed. McGraw Hill Book Co. Inc., New York.  pp. 352-358.

    Wachira, P.M., Kimenju, J.W., Okoth, S.A., & Mibey, R.K. (2009). Stimulation of nematode destroying fungi by organic amendments applied in management of plant parasitic nematode. Asian J. Plant Sci., 8, 153-159.

    Zawam, H.S., Youssef, M.M.A., & El-Hamawi, M.H. (2003). Effect of lantana (Lantana  camara) and castor (Ricinus communis) as green manure plants on Meloidogyne  javanica infecting sunflower (Helianthus annus) plant. In the Tenth Congress of  Phytopathology. Egyptian Phytopathological Society, Giza. (Egypt), pp. 97 – 104.

    Zhou, L., Yuen, G., & Wang, Y. (2016). Evaluation of bacterial biological control agents for control of root-knot nematode disease on tomato. Crop Prot., 84,8–13.