Peer Reviewed Open Access Journal
ISSN: 2394-5389 NAAS: 4.05
Submit ManuscriptTo assess the impact of Moringa and T. harzianum on managing Root Knot Nematode (M. incognita) in tomato and to ascertain the impact of combining Moringa and T. harzianum on (M. incognita) management in tomato, an experiment was carried out at the Ambo Agricultural Research Center in a greenhouse. Combinations of Moringa oleifera and T. harzianum were examined on plant parameters and M. incognita parameters on tomato plants at various concentrations of moringa plant extracts at(100%, 50%, 25%, 10%) and (1*104, 1*106, 1*108, 1*1010), respectively. The results showed that were significant variations (P0.05) on number of galls per plant, the number of egg masses per plant, final nematode population density per pot, and the reproduction factor among the treatments in terms of nematode population. Combined application of aqueous moringa plant extracts at S (100 percent) and T. harzianum at 1*1010spore/ml resulst showed the highest plant height 67.5 cm. The outcome showed those pots treated with aqueous moringa plant extracts S and T. harzianum 1*1010Spore/ml had the lowest mean reproduction factor (1.79) and population density (3588) compared to control. Pots treated with aqueous moringa plant extracts S/10 (10%) and T.harzianum 1*104Spore/ml had the highest mean reproduction factor and nematodes population density compared to the control. As a result, T. harzianum and M. oleifera could be utilized to combat M. incognita in the field. The findings of this study showed that test plants can lower nematode populations below economic thresholds and are easily accessible to farmers at no cost. Additional research is required to find new classes of bio-pesticides derived from natural plants that can take the place of the synthetic chemicals now in use.
aqueous, bio-pesticide, moringa, root knot nematode, Trichoderma harzianum
Abawi, G.S., & Widmer, T.L. (2000). Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Applied soil ecology, 15(1), 37-47.
Adegbite, A. A., & Adesiyan, S. O. (2006). Root extracts of plants to control root-knot nematode on edible soybean. Journal of Vegetable Science, 12(2), 5-12.
Agrios, G. N. (2005). Plant pathology (5th ed.). Elsevier Academic Press.
Akhtar, M., & Malik, A. (2000). Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Bioresource Technology, 74(1), 35-47.
Anwar, S.A., & Mckenry, M.V. (2010). Incidence and reproduction of Meloidogyne incognita on vegetable crop genotypes. Pakistan Journal of zoology, 42(2), 42,135-141.
Bailey, K. L., & Lazarovits, G. (2003). Suppressing soil-borne diseases with residue management and organic amendments. Soil and tillage research, 72(2), 169-180.
Chet, I., & Baker, R. (1980). Induction of suppressiveness to Rhizoctonia solani in soil. Phytopathology, 70(10), 994-998.
Claudius-Cole, A.O., Aminu, A.E., & Fawole, B. (2010). Evaluation of plant extracts in the management of root-knot nematode Meloidogyne incognita on cowpea (Vigna unguiculata (L) Walp]. Mycopath, 8(2), 53-60.
CSA (Central Statistical Agency). (2016). Report on area and production of crops (Private Peasant Holdings, Meher Season). Federal Democratic Republic of Ethiopia, Central Statistical Agency.
de Carvalho, L. M., Benda, N. D., Vaughan, M. M., Cabrera, A. R., Hung, K., Cox, T., ... & Teal, P. E. (2015). Mi-1-mediated nematode resistance in tomatoes is broken by short-term heat stress but recovers over time. Journal of nematology, 47(2), 133-140.
Feyisa, B., Lencho, A., Selvaraj, T., & Getaneh, G. (2019). Effect of some botanicals and Trichoderma harzianum against root-knot nematode Meloidogyne incognita, infecting tomato under green house. Acad. Res. J. Agri. Sci. Res., 7(5), 238-249.
Heidari, F., Olia, M. (2016). Biological control of root-knot nematode, Meloidogyne javanica, using vermicompost and fungus Trichoderma harzianum on tomato. Iran J Plant Pathol.; 52(1), 109-124.
Javed, N., Gowen, S. R., Inam-ul-Haq, M., Abdullah, K., & Shahina, F. (2007). Systemic and persistent effect of neem (Azadirachta indica) formulations against root-knot nematodes, Meloidogyne javanica and their storage life. Crop Protection, 26(7), 911-916.
Jones, J. T., Haegeman, A., Danchin, E. G.J., Gaur, H. S., Helder, J., Jones, M. G., ... & Perry, R. N. (2013). Top 10 plant‐parasitic nematodes in molecular plant pathology. Molecular plant pathology, 14(9), 946-961.
Kamran, M., Anwar, S. A., Javed, M., Khan, S. A., & Sahi, G. H. (2010). Incidence of root-knot nematodes on tomato in Sargodha, Punjab, Pakistan. Pakistan Journal of Nematology, 28(2), 253-262.
Khan, M. R., & Sharma, R. K. (2020). Fusarium-nematode wilt disease complexes, etiology and mechanism of development. Indian Phytopathology, 73(4), 615-628.
Kumar, V., Khan, M. R., & Walia, R. K. (2020). Crop loss estimations due to plant-parasitic nematodes in major crops in India. National Academy Science Letters, 43(5), 409-412.
Murslain, M., Javed, N., Khan, S. A., Khan, H. U., Abbas, H., & Kamran, M. (2014). Combined efficacy of Moringa oleifera leaves and a fungus, Trichoderma harzianum against Meloidogyne javanica on eggplant. Pakistan Journal of Zoology, 46(3), 827-832.
Naz, F., Haq, I. U., Asghar, S., Shah, A. S., & Rahman, A. (2011). Studies on growth, yield and nutritional composition of different tomato cultivars in Battal Valley of District Mansehra, Khyber Pakhtunkhwa, Pakistan. Sarhad J. Agric, 27(4), 569-571.
Neher, D. A., Wu, J., Barbercheck, M. E., & Anas, O. (2005). Ecosystem type affects interpretation of soil nematode community measures. Applied Soil Ecology, 30(1), 47-64.
Oka, Y. (2010). Mechanisms of nematode suppression by organic soil amendments—A review. Applied Soil Ecology, 44(2), 101-115.
Saifullah, S., & Thomas, B. J. (1996). Studies on the parasitism of Globodera rostochiensis by Trichoderma harzianum using low temperature scanning electron microscopy. Afro-Asian Journal of Nematology, 6(2), 117–122.
Sharon, E., Bar-Eyal, M., Chet, I., Herrera-Estrella, A., Kleifeld, O., & Spiegel, Y. (2001). Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology, 91(7), 687-693.
Sharon, E., Chet, I., Viterbo, A., Bar-Eyal, M., Nagan, H., Samuels, G. J., & Spiegel, Y. (2007). Parasitism of Trichoderma on Meloidogyne javanica and role of the gelatinous matrix. European journal of plant pathology, 118(3), 247-258.
Steel, R. G. D., & Torrie, J. H. (1980). Principles and procedures of statistics: A biometrical approach (2nd ed.). McGraw‑Hill.
Wachira, P. M., Kimenju, J. W., Okoth, S. A., & Mibey, R. K. (2009). Stimulation of nematode-destroying fungi by organic amendments applied in management of plant parasitic nematode. Asian Journal of Plant Sciences, 8(2), 153–159.
Zawam, H. S., Youssef, M. M. A., & El-Hamawi, M. H. (2003). Effect of lantana (Lantana camara) and castor (Ricinus communis) as green manure plants on Meloidogyne javanica infecting sunflower (Helianthus annus) plant. In the Tenth Congress of Phytopathology. Egyptian Phytopathological Society of December (pp. 97-104).
Zhang, J., Waddell, C., Sengupta‐Gopalan, C., Potenza, C., & Cantrell, R. G. (2006). Relationships between Root‐Knot Nematode Resistance and Plant Growth in Upland Cotton: Galling Index as a Criterion. Crop science, 46(4), 1581-1586.
Zhou, L., Yuen, G., Wang, Y., Wei, L., & Ji, G. (2016). Evaluation of bacterial biological control agents for control of root-knot nematode disease on tomato. Crop Protecion, 84,8–13.
