Agriculture is at a great risk on a global scale as because the areas that are most vulnerable to climate change include but are not limited to Africa, Asia and Latin America. As a result, we will witness increase in severe weather events, such as droughts, floods and heat waves which may disrupt crop production systems causing the loss of biodiversity. Consequently, it is important that plants that can survive these unfavorable conditions are found. Millets, small-seeded cereals that make up a group known for its ability to grow under unfavorable conditions including drought stress, stand out as an option revealing promise due to their unique adaptability in marginal environments. Having diverse origins and among the most ancient grains ever known, millets number about 6,000 species globally with rich nutritional composition and genetic diversity; thus they represent a practical choice toward enhancing climate resilience in agriculture through adoption at local levels worldwide. In this paper, we look at the biology of millets. We discuss their uniqueness in terms of domestication history plus their stress tolerance and climate resilience, features that set them apart from other cereal crops. Additionally, we delve into their major nutritional qualities, broad adaptability and genetic potential which all contribute to making millets a standout crop choice. Gene editing and biotechnological approaches take center stage as instrumental in hastening domestication efforts while still engineering high yielding millets that hold onto their climate resilience, a two pronged priority approach for enhanced production on one hand and preserving biodiversity on the other. In light of the changing climate patterns, it is clear that focusing on enhancing and growing millet on a large scale is essential for building resilient agriculture and securing food sources.
agriculture, climate change, genetic diversity, millets, nutrition, resilience
Ajithkumar, K., & Panneerselvam, R. (2014). Changes in biochemical constituents and root length of finger millet (Eleusine coracana L.) under different soil moisture regimes. International Journal of Agriculture, Environment and Biotechnology, 7(4), 855-861.
Allouis, S., Qi, X., Lindup, S., Gale, M.D., & Devos, K.M. (2001). Construction of a BAC library of pearl millet (Pennisetum glaucum). Theoret. Appl. Genetics, 102, 1200-1205. DOI: https://doi.org/10.1007/s001220100559.
Amadou, I., Gounga, M.E., & Le, G.W. (2013). Millets: nutritional composition, some health benefits and processing - A review. Emirates Journal of Food and Agriculture, 25(7), 501-508.
Ananda, G.K., Myrans, H., Norton, S.L., Gleadow, R., Furtado, A., & Henry, R.J. (2020). Wild sorghum as a promising resource for crop improvement. Frontiers in Plant Science, 11, 1108. DOI: https://doi.org/10.3389/fpls.2020.01108.
Ayanlade, A., Radeny, M., Morton, J.F., & Muchaba, T. (2018). Rainfall variability and drought characteristics in two agro-climatic zones: an assessment of climate change challenges in Africa. Science of the Total Environment, 630, 728-737. DOI: https://doi.org/10.1016/j.scitotenv.2018.02.196.
Bálint, M., Domisch, S., Engelhardt, C. H. M., Haase, P., Lehrian, S., Sauer, J., ... & Nowak, C. (2011). Cryptic biodiversity loss linked to global climate change. Nature climate change, 1, 313-318. DOI: https://doi.org/10.1038/nclimate1191.
Balsamo, R. A., Willigen, C. V., Bauer, A. M., & Farrant, J. (2006). Drought tolerance of selected Eragrostis species correlates with leaf tensile properties. Annals of botany, 97(6), 985-991.
Bandyopadhyay, T., Muthamilarasan, M., & Prasad, M. (2017). Millets for next generation climate-smart agriculture. Frontiers in Plant Science, 8, 1266. DOI: https://doi.org/10.3389/fpls.2017.01266.
Bidinger, F.R., Nepolean, T., Hash, C.T., Yadav, R.S., & Howarth, C.J. (2007). Quantitative trait loci for grain yield in pearl millet under variable post flowering moisture conditions. Crop Science, 47(3), 969-980. DOI: https://doi.org/10.2135/cropsci2006.07.0465.
Chadalavada, K., Kumari, B. R., & Kumar, T. S. (2021). Sorghum mitigates climate variability and change on crop yield and quality. Planta, 253(5), 113. DOI: https://doi.org/10.1007/s00425-021-03631-2.
Chandel, G., Meena, R. K., Dubey, M., & Kumar, M. (2014). Nutritional properties of minor millets: neglected cereals with potentials to combat malnutrition. Current Science, 107(7), 1109-1111.
Chandrasekara, A., & Shahidi, F. (2010). Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. Journal of Agricultural and Food Chemistry, 58(11), 6706-6714. DOI: https://doi.org/10.1021/jf100868b.
Changmei, S., & Dorothy, J. (2014). Millet - the frugal grain. International Journal of Scientific Research and Reviews, 3(4), 75-90.
Chaturvedi, P., Govindaraj, M., Govindan, V., & Weckwerth, W. (2022). Sorghum and pearl millet as climate resilient crops for food and nutrition security. Frontiers in Plant Science, 13, 851970. DOI: https://doi.org/10.3389/fpls.2022.851970.
Chen, J., Chopra, R., Hayes, C., Morris, G., Marla, S., Burke, J., Xin, Z., & Burow, G. (2017). Genome-wide association study of developing leaves’ heat tolerance during vegetative growth stages in a Sorghum Association Panel. Plant Genome, 10(2), 1-15. DOI: https://doi.org/10.3835/plantgenome2016.09.0091.
Cheng, Z., Sun, Y., Yang, S., Zhi, H., Yin, T., Ma, X., ... & Sui, Y. (2021). Establishing in planta haploid inducer line by edited SiMTL in foxtail millet (Setaria italica). Plant Biotechnology Journal, 19(6), 1089. DOI: https://doi.org/10.1111/pbi.13584.
Choudhary, N., Rai, A., Kuniyal, J. C., Srivastava, P., Lata, R., Dutta, M., ... & Kotnala, R. K. (2023). Chemical characterization and source apportionment of PM10 using receptor models over the Himalayan Region of India. Atmosphere, 14(5), 880.
Choudhary, P., Shukla, P., & Muthamilarasan, M. (2023). Genetic enhancement of climate-resilient traits in small millets: a review. Heliyon, 9(4).
Devi, P. B., Vijayabharathi, R., Sathyabama, S., Malleshi, N. G., & Priyadarisini, V. B. (2014). Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: a review. Journal of food science and technology, 51(6), 1021-1040.DOI: https://doi.org/10.1007/s13197-011-0584-9.
Devos, K. M., Pittaway, T. S., Busso, C. S., Gale, M. D., Witcombe, J. R., & Hash, C. T. (1995). Molecular tools for the pearl millet nuclear genome. International Sorghum and Millets Newsletter, 36, 64-66.
Djanaguiraman, M., Perumal, R., Jagadish, S. V. K., Ciampitti, I. A., Welti, R., & Prasad, P. V. V. (2018). Sensitivity of sorghum pollen and pistil to high‐temperature stress. Plant, Cell & Environment, 41(5), 1065-1082. DOI: https://doi.org/10.1111/pce.13089.
Feulner, G. (2017). Global challenges: climate change. Global Challenges, 1(1), 5-6. DOI: https://doi.org/10.1002/gch2.1003.
Ghatak, A., Chaturvedi, P., Bachmann, G., Valledor, L., Ramšak, Ž., Bazargani, M. M., ... & Weckwerth, W. (2021). Physiological and proteomic signatures reveal mechanisms of superior drought resilience in pearl millet compared to wheat. Frontiers in Plant Science, 11, 600278. DOI: https://doi.org/10.3389/fpls.2020.600278.
Goron, T. L., & Raizada, M. N. (2015). Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. Frontiers in plant science, 6, 157. DOI: https://doi.org/10.3389/fpls.2015.00157.
Gupta, S. K., Rai, K. N., Singh, P., Ameta, V. L., Gupta, S. K., Jayalekha, A. K., ... & Verma, Y. S. (2015). Seed set variability under high temperatures during flowering period in pearl millet (Pennisetum glaucum L. (R.) Br.). Field Crops Research, 171, 41-53. DOI: https://doi.org/10.1016/j.fcr.2014.11.005.
Hariprasanna, K. (2017). Kodo millet, Paspalum scrobiculatum L. Millets and sorghum: biology and genetic improvement, 199-225. DOI: https://doi.org/10.1002/9781119130765.ch8.
Heuzé, V., Tran, G., & Giger-Reverdin, S. (2012). Scrobic (Paspalum scrobiculatum) forage and grain. A programme by INRA, CIRAD, AFZ and FAO. Feedipedia. Available at: https://www.feedipedia.org/node/401. Accessed on: 10th January, 2023.
Impa, S. M., Perumal, R., Bean, S. R., Sunoj, V. J., & Jagadish, S. K. (2019). Water deficit and heat stress induced alterations in grain physico-chemical characteristics and micronutrient composition in field grown grain sorghum. Journal of Cereal Science, 86, 124-131. DOI: https://doi.org/10.1016/j.jcs.2019.01.013.
Johnson, S. M., Lim, F. L., Finkler, A., Fromm, H., Slabas, A. R., & Knight, M. R. (2014). Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress. BMC genomics, 15(1), 456. DOI: https://doi.org/10.1186/1471-2164-15-456.
Kamatar, M. Y., Sreeramaiah, H., Megha, D. R., Talawar, S., & Naik, R. K. (2013). Evaluation of little millet (Panicum sumatrense) land races for cooking and nutritional composition. Current Research in Biological and Pharmaceutical Sciences, 2(1), 7-11.
Kumar, A., Yadav, S., Panwar, P., Gaur, V. S., & Sood, S. (2015). Identification of anchored simple sequence repeat markers associated with calcium content in finger millet (Eleusine coracana). Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 85(1), 311-317.
Kumari, P. L., & Sumathi, S. (2002). Effect of consumption of finger millet on hyperglycemia in non-insulin dependent diabetes mellitus (NIDDM) subjects. Plant Foods Hum. Nutr. 57, 205-213. DOI: https://doi.org/10.1023/A:1021805028738.
Lata, C., Bhutty, S., Bahadur, R. P., Majee, M., & Prasad, M. (2011). Association of an SNP in a novel DREB2-like gene SiDREB2 with stress tolerance in foxtail millet [Setaria italica (L.)]. Journal of Experimental Botany, 62(10), 3387-3401.
Li, C., Wang, G., Li, H., Wang, G., Ma, J., Zhao, X., ... & Yao, L. (2021). High-depth resequencing of 312 accessions reveals the local adaptation of foxtail millet. Theoretical and Applied Genetics, 134(5), 1303-1317.
Li, P., & Brutnell, T.P. (2011). Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. Journal of Experimental Botany, 62(9), 3031-3037. DOI: https://doi.org/10.1093/jxb/err096.
Lin, C. S., Hsu, C. T., Yang, L. H., Lee, L. Y., Fu, J. Y., Cheng, Q. W., ... & Shih, M. C. (2018). Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single‐cell mutation detection to mutant plant regeneration. Plant biotechnology journal, 16(7), 1295-1310. DOI: https://doi.org/10.1111/pbi.12870.
Liu, C. J., Witcombe, J. R., Pittaway, T. S., Nash, M., Hash, C. T., Busso, C. S., & Gale, M. D. (1994). An RFLP-based genetic map of pearl millet (Pennisetum glaucum). Theoretical and applied genetics, 89(4), 481-487. DOI: https://doi.org/10.1007/BF00225384.
Mahesh, H. B., Manasa, K. G., Raghavendra, N. R., Shirke, M. D., & Hittalmani, S. (2022). The complete genome sequence of finger millet. In The finger millet genome (pp. 101-111). Cham: Springer International Publishing.
Meena, R.P., Vishwakarma, H., Ghosh, G., Gaikwad, K., Chellapilla, T.S., Singh, M.P., & Padaria, J.C., 2020. Novel ASR isolated from drought stress responsive SSH library in pearl millet confers multiple abiotic stress tolerance in PgASR3 transgenic arabidopsis. Plant Physiology and Biochemistry, 156, 7-19. DOI: https://doi.org/10.1016/j.plaphy.2020.07.031.
Muthamilarasan, M., & Prasad, M., 2015. Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theoretical and Applied Genetics, 128(1), 1-14. DOI: https://doi.org/10.1007/s00122-014-2399-3.
Nagaraju, M., Sudhakar Reddy, P., Anil Kumar, S., Srivastava, R.K., Kavi Kishor, P.B., & Rao, D. M. (2015). Genome-wide Scanning and Characterization of Sorghum bicolor L. Heat Shock Transcription Factors. Current Genomics, 16(4), 279-291. DOI: https://doi.org/10.2174/1389202916666150313230812.
Nehru, G., Reddy, A. T., Reddy, C. C. M., & Sreenivasulu, K. N. (2021). Assessment of genetic variability in indian barnyard millet genetic resources [Echinochloa frumentacea (L.)]. ANGRAU, 134.
Niu, X., Song, L., Xiao, Y., & Ge, W. (2018). Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Frontiers in microbiology, 8, 2580.
Njuguna, V.W., Cheruiyot, E.K., Mwonga, S., & Rono, J.K., 2018. Effect of genotype and environment on grain quality of sorghum (Sorghum bicolor L. Moench) lines evaluated in Kenya. African Journal of Plant Science, 12(12), 324-330. DOI: https://doi.org/10.5897/AJPS2018.1642.
Padulosi, S., Mal, B., Ravi, S.B., Gowda, J., Gowda, K.T.K., Shanthakumar, G., Yenagi, N., & Dutta, M., 2009. Food security and climate change: role of plant genetic resources of minor millets. Indian J. Plant Genet. Resour., 22(1), 1-16.
Pang, B., Zhang, K., Kisekka, I., Bean, S., Zhang, M., & Wang, D., 2018. Evaluating effects of deficit irrigation strategies on grain sorghum attributes and biofuel production. J. Cereal Sci., 79, 13-20. DOI: https://doi.org/10.1016/j.jcs.2017.09.002.
Panwar, P., Dubey, A., & Verma, A.K., 2016. Evaluation of nutraceutical and antinutritional properties in barnyard and finger millet varieties grown in Himalayan region. J. Food Sci. Technol. 53(6), 2779-2787. DOI: https://doi.org/10.1007/s13197-016-2250-8.
Patel, S.N., Patil, H.E., Modi, H.M., & Singh, T.J., 2018. Genetic variability study in little millet (Panicum miliare L.) genotypes in relation to yield and quality traits. Int. J. Curr. Microbiol. App. Sci., 7(6), 2712-2725. DOI: https://doi.org/10.20546/ijcmas.2018.706.320.
Patil, P. B., Goudar, G., Preethi, K., Rao, J. S., & Acharya, R. (2023). Millets: empowering the society with nutrient-rich superfoods to achieve sustainable development goals. Journal of Drug Research in Ayurvedic Sciences, 8(Suppl 1), S100-S114.
Renganathan, V.G., Vanniarajan, C., Karthikeyan, A., & Ramalingam, J., 2020. Barnyard millet for food and nutritional security: current status and future research direction. Frontiers in Genetics, 11, 500. DOI: https://doi.org/10.3389/fgene.2020.00500.
Sage, R.F., Christin, P.A., & Edwards, E.J., 2011. The C4 plant lineages of planet Earth. Journal of Experimental Botany, 62(9), 3155-3169. DOI: https://doi.org/10.1093/jxb/err048.
Saleh, A., Zhang, Q., Chen, J., & Shen, Q., 2013. Millet grains: nutritional quality, processing and potential health benefits. Compr. Rev. Food Sci. Food Saf., 12(3), 281-295. DOI: https://doi.org/10.1111/1541-4337.12012.
Sarshad, A., Talei, D., Torabi, M., Rafei, F., & Nejatkhah, P., 2021. Morphological and biochemical responses of Sorghum bicolor (L.) Moench under drought stress. SN Applied Science, 3(1), 81. DOI: https://doi.org/10.1007/s42452-020-03977-4.
Satyavathi, C. T., Ambawat, S., Khandelwal, V., & Srivastava, R. K. (2021). Pearl millet: a climate-resilient nutricereal for mitigating hidden hunger and provide nutritional security. Frontiers in Plant Science, 12, 659938.DOI: https://doi.org/10.3389/fpls.2021.659938.
Satyavathi, C. T., Khandelwal, V., Supriya, A., Beniwal, B. R., Sushila, B., Mahesh, C. K., ... & Meena, H. (2020). Pearl Millet-Hybrids and Varieties-2020. Jodhpur: ICAR-All India Coordinated Research Project on Pearl Millet.
Sehgal, D., Rajaram, V., Armstead, I. P., Vadez, V., Yadav, Y. P., Hash, C. T., & Yadav, R. S. (2012). Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC Plant Biology, 12(1), 9. DOI: https://doi.org/10.1186/1471-2229-12-9.
Shortridge, J., 2019. Observed trends in daily rainfall variability result in more severe climate change impacts to agriculture. Climatic Change, 157(3), 429-444. DOI: https://doi.org/10.1007/s10584-019-02555-x.
Smirnoff, N., & Colombe, S. V. (1988). Drought influences the activity of enzymes of the chloroplast hydrogen peroxide scavenging system. Journal of Experimental Botany, 39(8), 1097-1108.
Sreekala, A. D. S, Anbukkani, P., Singh, A., Dayakar Rao, B., & Jha, G. K. (2023). Millet production and consumption in India: where do we stand and where do we go?. National Academy Science Letters, 46(1), 65-70.
Ugare, R., Chimmad, B., Naik, R., Bharati, P., & Itagi, S. (2014). Glycemic index and significance of barnyard millet (Echinochloa frumentacae) in type II diabetics. Journal of food science and technology, 51(2), 392-395. DOI: https://doi.org/10.1007/s13197-011-0516-8.
Upadhyaya, H.D., Vetriventhan, M., & Azevedo, V.C.R., 2021. Variation for photoperiod and temperature sensitivity in the global mini core collection of sorghum. Frontiers in Plant Science, 12, 571243. DOI: https://doi.org/10.3389/fpls.2021.571243.
Vanniarajan, C., Anand, G., Kanchana, S., Giridhari, V.V.A., & Renganathan, V.G., 2018. A short duration high yielding culture - Barnyard millet ACM10145. Agricultural Science Digest, 38(2), 123-126. DOI: https://doi.org/10.18805/ag.D-4574.
Varshney, R. K., Shi, C., Thudi, M., Mariac, C., Wallace, J., Qi, P., ... & Xu, X. (2017). Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature biotechnology, 35(10), 969-976. DOI: https://doi.org/10.1038/nbt.3943.
Varshney, R.K., Terauchi, R., & McCouch, S.R., 2014. Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biology, 12(6), e1001883. DOI: https://doi.org/10.1371/journal.pbio.1001883.
Wang, D., Bean, S., McLaren, J., Seib, P., Madl, R., Tuinstra, M., ... & Zhao, R. (2008). Grain sorghum is a viable feedstock for ethanol production. Journal of Industrial Microbiology and Biotechnology, 35(5), 313-320.
Weckwerth, W., Ghatak, A., Bellaire, A., Chaturvedi, P., & Varshney, R.K., 2020. PANOMICS meets germplasm. Plant Biotechnol. J., 18(7), 1507-1525. DOI: https://doi.org/10.1111/pbi.13372.
Yadav, C. B., Bonthala, V. S., Muthamilarasan, M., Pandey, G., Khan, Y., & Prasad, M. (2015). Genome-wide development of transposable elements-based markers in foxtail millet and construction of an integrated database. DNA research, 22(1), 79-90.
Zhang, G., Liu, X., Quan, Z., Cheng, S., Xu, X., Pan, S., ... & Wang, J. (2012). Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature biotechnology, 30(6), 549-554.DOI: https://doi.org/10.1038/nbt.2195.