Journal of Innovative Agriculture, Volume 11, Issue 2 : 25-35. Doi : 10.37446/jinagri/ra/11.2.2024.25-35
Review Article

OPEN ACCESS | Published on : 30-Jun-2024

Millets in the limelight: wonder crops for combating climate change and nutritional security

  • Akanchha Pandey
  • ICAR-BBSLN: Krishi Vigyan Kendra Govindnagar, Narmadapuram, Madhya Pradesh (461 990), India.
  • Brajesh K. Namdev
  • ICAR-BBSLN: Krishi Vigyan Kendra Govindnagar, Narmadapuram, Madhya Pradesh (461 990), India.
  • Devidas Patel
  • ICAR-BBSLN: Krishi Vigyan Kendra Govindnagar, Narmadapuram, Madhya Pradesh (461 990), India.
  • Pankaj Sharma
  • ICAR-BBSLN: Krishi Vigyan Kendra Govindnagar, Narmadapuram, Madhya Pradesh (461 990), India.
  • Rajendra Patel
  • ICAR-BBSLN: Krishi Vigyan Kendra Govindnagar, Narmadapuram, Madhya Pradesh (461 990), India.


Agriculture is at a great risk on a global scale as because the areas that are most vulnerable to climate change include but are not limited to Africa, Asia and Latin America. As a result, we will witness increase in severe weather events, such as droughts, floods and heat waves which may disrupt crop production systems causing the loss of biodiversity. Consequently, it is important that plants that can survive these unfavorable conditions are found. Millets, small-seeded cereals that make up a group known for its ability to grow under unfavorable conditions including drought stress, stand out as an option revealing promise due to their unique adaptability in marginal environments. Having diverse origins and among the most ancient grains ever known, millets number about 6,000 species globally with rich nutritional composition and genetic diversity; thus they represent a practical choice toward enhancing climate resilience in agriculture through adoption at local levels worldwide. In this paper, we look at the biology of millets. We discuss their uniqueness in terms of domestication history plus their stress tolerance and climate resilience, features that set them apart from other cereal crops. Additionally, we delve into their major nutritional qualities, broad adaptability and genetic potential which all contribute to making millets a standout crop choice. Gene editing and biotechnological approaches take center stage as instrumental in hastening domestication efforts while still engineering high yielding millets that hold onto their climate resilience, a two pronged priority approach for enhanced production on one hand and preserving biodiversity on the other. In light of the changing climate patterns, it is clear that focusing on enhancing and growing millet on a large scale is essential for building resilient agriculture and securing food sources.


agriculture, climate change, genetic diversity, millets, nutrition, resilience


  • Ajithkumar, K., Panneerselvam, R., 2014. Changes in biochemical constituents and root length of finger millet (Eleusine coracana L.) under different soil moisture regimes. International Journal of Agriculture, Environment and Biotechnology, 7(4), 855-861.

    Allouis, S., Qi, X., Lindup, S., Gale, M.D., Devos, K.M., 2001. Construction of a BAC library of pearl millet (Pennisetum glaucum). Theoret. Appl. Genetics, 102, 1200-1205. DOI:

    Amadou, I., Gounga, M.E., Le, G.W., 2013. Millets: nutritional composition, some health benefits and processing - A review. Emirates Journal of Food and Agriculture, 25(7), 501-508. DOI:

    Ananda, G.K., Myrans, H., Norton, S.L., Gleadow, R., Furtado, A., Henry, R.J., 2020. Wild sorghum as a promising resource for crop improvement. Frontiers in Plant Science, 11, 1108. DOI:

    Anbukkani, P., Sathya, P.R., Sivakami, R., 2017. Millets - Upgraded nutrition for the modern diet. International Journal of Pure and Applied Bioscience, 5(5), 718-722.

    Ayanlade, A., Radeny, M., Morton, J.F., Muchaba, T., 2018. Rainfall variability and drought characteristics in two agro-climatic zones: an assessment of climate change challenges in Africa. Science of the Total Environment, 630, 728-737. DOI:

    Bálint, M., Domisch, S., Engelhardt, C.H.M., Haase, P., Lehrian, S., Sauer, J., Theissinger, K., Pauls, S.U., Nowak, C., 2011. Cryptic biodiversity loss linked to global climate change. Nature Climate Change,1, 313-318. DOI:

    Balsamo, R.A., Magalhães, P.C., Parentoni, S.N., de Souza, T.C., Vasconcelos, A.C.M., Freitas, E.A., 2006. Tensile strength and water potential of maize, sorghum and teff leaves during water deficit. Brazilian Journal of Plant Physiology, 18(1), 63-73.

    Bandyopadhyay, T., Muthamilarasan, M., Prasad, M., 2017. Millets for next generation climate-smart agriculture. Frontiers in Plant Science, 8, 1266. DOI:

    Bidinger, F.R., Nepolean, T., Hash, C.T., Yadav, R.S., Howarth, C.J., 2007. Quantitative trait loci for grain yield in pearl millet under variable post flowering moisture conditions. Crop Science, 47(3), 969-980. DOI:

    Chadalavada, K., Kumari, B.D.R. Kumar, T.S., 2021. Sorghum mitigates climate variability and change on crop yield and quality. Planta, 253, 113. DOI:

    Chandel, G., Meena, R., Dubey, M., Kumar, M., 2014. Nutritional properties of minor millets: neglected cereals with potentials to combat malnutrition. Current Science, 107(7), 1109-1111.

    Chandrasekara, A., Shahidi, F., 2010. Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. Journal of Agricultural and Food Chemistry, 58(11), 6706-6714. DOI:

    Changmei, S., Dorothy, J., 2014. Millet - the frugal grain. International Journal of Scientific Research and Reviews, 3(4), 75-90.

    Chaturvedi, P., Govindaraj, M., Govindan, V., Weckwerth, W., 2022. Editorial: Sorghum and pearl millet as climate resilient crops for food and nutrition security. Frontiers in Plant Science, 13, 851970. DOI:

    Chen, J., Chopra, R., Hayes, C., Morris, G., Marla, S., Burke, J., Xin, Z., Burow, G., 2017. Genome-wide association study of developing leaves’ heat tolerance during vegetative growth stages in a Sorghum Association Panel. Plant Genome, 10(2), 1-15. DOI:

    Cheng, Z., Sun, Y., Yang, S., Zhi, H., Yin, T., Ma, X., Li, X., 2021. Establishing in planta haploid inducer line by edited SiMTL in foxtail millet (Setaria italica). Plant Biotechnol J., 19(6), 1089-1091. DOI:

    Devi, P.B., Vijayabharathi, R., Sathyabama, S., Malleshi, N.G., Priyadarisini, V.B., 2014. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: a review. J. Food Sci. Technol., 51(6), 1021-1040. DOI:

    Devos, K.M., Pittaway, T.S., Busso, C.S., Gale, M.D., Witcombe, J.R., Hash, C.T., 1995. Molecular tools for the pearl millet nuclear genome. International Sorghum and Millets Newsletter, 36, 64-66.

    Djanaguiraman, M., Perumal, R., Jagadish, S.V.K., Ciampitti, I.A., Welti, R., Prasad, P.V.V. 2018. Sensitivity of sorghum pollen and pistil to high-temperature stress. Plant Cell Environ., 41(5), 1065-1082. DOI:

    Feulner, G., 2017. Global challenges: climate change. Global Challenges, 1(1), 5-6. DOI:

    Ghatak, A., Chaturvedi, P., Bachmann, G., Valledor, L., Ramsak, Z., Bazargani, M.M., Bajaj, P., Jegadeesan, P., Li. W., Sun, X., Gruden, K., Versshney, R.K., Weckwerth, W., 2021. Physiological and proteomic signatures reveal mechanisms of superior drought resilience in pearl millet compared to wheat. Frontiers in Plant Science, 11, 600278. DOI:

    Goron, T.L., Raizada, M.N., 2015. Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. Frontiers in Plant Science, 6, 157. DOI:

    Gupta, S.K., Rai, K.N., Singh, P., Ameta, V.L., Gupta, S.K., Jayalekha, A.K., Mahala, R.S., Pareek, S., Swami, M.L., Verma, Y.S., 2015. Seed set variability under high temperatures during flowering period in pearl millet [Pennisetum glaucum L. (R.) Br.]. Field Crops Res., 171, 41-53. DOI:

    Hariprasanna, K., 2017. Kodo Millet, Paspalum scrobiculatum L. In: Millets and Sorghum: Biology and Genetic Improvement. (Ed.) Patil, J.V. John Wiley & Sons Ltd. pp. 199-225. DOI:

    Heuzé, V., Tran, G., Giger-Reverdin, S., 2012. Scrobic (Paspalum scrobiculatum) forage and grain. A programme by INRA, CIRAD, AFZ and FAO. Feedipedia. Available at: Accessed on: 10th January, 2023.

    Impa, S.M., Perumal, R., Bean, S.R., Sunoj, V.J., Jagadish, S.K., 2019. Water deficit and heat stress induced alterations in grain physico-chemical characteristics and micronutrient composition in feld grown grain sorghum. Journal of Cereal Science, 86, 124-131. DOI:

    Johnson, S.M., Lim, F.L., Finkler, A., Fromm, H., Slabas, A.R., Knight, M.R., 2014. Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress. BMC Genomics, 15(1), 456. DOI:

    Kamatar, M.Y., Sreeramaiah, H., Megha, D.R., Talawar, S., Naik, R.K., 2013. Evaluation of little millet (Panicum sumatrense) land races for cooking and nutritional composition. Current Research in Biological and Pharmaceutical Sciences, 2(1), 7-11.

    Kumar, S., Mohan, A., Verma, A. K., Yadav, A. K., Tiwari, V., Chattopadhyay, D., 2015. Transcriptome sequencing of high and low seed calcium genotypes of finger millet (Eleusine coracana (L.) Gaertn.) reveals changes in gene expression and SSR variation. PloS one, 10(9), e0138417.

    Kumari, P. L., Sumathi, S., 2002. Effect of consumption of finger millet on hyperglycemia in non-insulin dependent diabetes mellitus (NIDDM) subjects. Plant Foods Hum. Nutr. 57, 205-213. DOI:

    Lin, C.S., Hsu, C.T., Yang, L.H., Lee, L.Y., Fu, J.Y., Cheng, Q.W., Wu, F.H., Hsiao, H.C.W., Zhang, Y., Zhang, R., Chang, W.J., 2018. Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol J., 16(7), 1295-1310. DOI:

    Lata, C., Mishra, A., Muthamilarasan, M., Bonthala, V. S., Khan, Y., Prasad, M., 2011. Genome-wide investigation and expression analysis of Sodium/Calcium exchanger gene family in rice and Arabidopsis. Rice, 4(4), 118-130.

    Li, M., Zhang, X., Wang, W., Xu, Q., Yan, S., Li, S., Li, J., Liu, Z., Wang, J., Liu, Z., Ren, J., Lu, Q., Zhao, W., Chen, H., Tang, W., Liu, N., Liu, Y., Liu, W., Zhang, X., Zhang, X., Sun, X., Wang, X., Wang, X., Jin, J., Yang, Q., An, C., Wu, C., Chen, X., Wang, Z., Wu, X., Xie, C., Zhang, J., Lei, C., Jiang, W., Ouyang, Y., Feng, Z., Li, L., Li, R., Zhang, G., Zhi, H., Liang, C., 2021. Deep resequencing of 312 foxtail millet landraces enhances our understanding of population-specific adaptation. Nature Genetics, 53(5), 752-760.

    Li, P., Brutnell, T.P., 2011. Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. Journal of Experimental Botany, 62(9), 3031-3037. DOI:

    Liu, C.J., Witcombe, J.R., Pittaway, T.S., Nash, M., Hash, C.T., Busso, C.S., Gale, M.D., 1994. An RFLP-based genetic map of pearl millet (Pennisetum glaucum). Theoret. Appl. Genetics, 89, 481-487. DOI:

    Mahesh, H.B., Anuradha, N., Thirunavukkarasu, N., Singh, N.K., 2022. Advances in genomics and molecular breeding of finger millet (Eleusine coracana (L.) Gaertn.): current status and future prospects. Molecular Breeding, 42(2), 25.

    Meena, R.P., Vishwakarma, H., Ghosh, G., Gaikwad, K., Chellapilla, T.S., Singh, M.P., Padaria, J.C., 2020. Novel ASR isolated from drought stress responsive SSH library in pearl millet confers multiple abiotic stress tolerance in PgASR3 transgenic arabidopsis. Plant Physiol Biochem., 156, 7-19. DOI:

    Muthamilarasan, M., Prasad, M., 2015. Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theoretical and Applied Genetics, 128(1), 1-14. DOI:

    Nagaraju, M., Sudhakar R.P., Anil, K.S., Srivastava, R.K., Kavi, K.P.B., Rao, D.M., 2015. Genome-wide scanning and characterization of Sorghum bicolor L. heat shock transcription factors. Current Genomics, 16(4), 279-291. DOI:

    Niu, Y.F., Chai, R.S., Jin, G.L., Wang, H., Tang, C.X., Zhang, Y.S., 2018. Isolation and characterization of plant growth-promoting rhizobacteria associated with the drought tolerance of foxtail millet on the Loess Plateau. Plant Physiology and Biochemistry: PPB, 126, 1-12.

    Njuguna, V.W., Cheruiyot, E.K., Mwonga, S., Rono, J.K., 2018. Effect of genotype and environment on grain quality of sorghum (Sorghum bicolor L. Moench) lines evaluated in Kenya. African Journal of Plant Science, 12(12), 324-330. DOI:

    Padulosi, S., Mal, B., Ravi, S.B., Gowda, J., Gowda, K.T.K., Shanthakumar, G., Yenagi, N., Dutta, M., 2009. Food security and climate change: role of plant genetic resources of minor millets. Indian J. Plant Genet. Resour., 22(1), 1-16.

    Pang, B., Zhang, K., Kisekka, I., Bean, S., Zhang, M., Wang, D., 2018. Evaluating effects of deficit irrigation strategies on grain sorghum attributes and biofuel production. J. Cereal Sci., 79, 13-20. DOI:

    Panwar, P., Dubey, A., Verma, A.K., 2016. Evaluation of nutraceutical and antinutritional properties in barnyard and finger millet varieties grown in Himalayan region. J. Food Sci. Technol. 53(6), 2779-2787. DOI:

    Patel, S.N., Patil, H.E., Modi, H.M., Singh, T.J., 2018. Genetic variability study in little millet (Panicum miliare L.) genotypes in relation to yield and quality traits. Int. J. Curr. Microbiol. App. Sci., 7(6), 2712-2725. DOI:

    Peng, Y., Zhang, Z., 2021. Setaria as a model system for C4 photosynthesis research. Journal of Experimental Botany, 72(1), 23-34.

    Renganathan, V.G., Vanniarajan, C., Karthikeyan, A., Ramalingam, J., 2020. Barnyard millet for food and nutritional security: current status and future research direction. Frontiers in Genetics, 11, 500. DOI:

    Renganathan, V., Thirunavukkarasu, M., Arunachalam, S., 2017. Genetic variability studies on selected nutritional and yield parameters in barnyard millet (Echinochloa spp.). Journal of Crop Improvement 31(1), 1-17.

    Sage, R.F., Christin, P.A., Edwards, E.J., 2011. The C4 plant lineages of planet Earth. Journal of Experimental Botany, 62(9), 3155-3169. DOI:

    Saleh, A., Zhang, Q., Chen, J., Shen, Q., 2013. Millet grains: nutritional quality, processing and potential health benefits. Compr. Rev. Food Sci. Food Saf., 12(3), 281-295. DOI:

    Sarshad, A., Talei, D., Torabi, M., Rafei, F., Nejatkhah, P., 2021. Morphological and biochemical responses of Sorghum bicolor (L.) Moench under drought stress. SN Applied Science, 3(1), 1-12. DOI:

    Satyavathi, C.T., Khandelwal, V., Supriya, A., Beniwal, B.R., Sushila, B., Mahesh, C.K., 2020. Pearl Millet - Hybrids and Varieties - 2020. Jodhpur: ICAR-All India Coordinated Research Project on Pearl Millet.

    Satyavathi, C.T., Ambawat, S., Khandelwal, V., Srivastava, R.K., 2021. Pearl millet: A climate-resilient nutricereal for mitigating hidden hunger and provide nutritional security. Frontiers in Plant Science,12, 659938. DOI:

    Sehgal, D., Rajaram, V., Armstead, I.P., Vadez, V., Yadav, Y.P., Hash, C.T., Yadav, R.S., 2012. Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC Plant Biology, 12, 9. DOI:

    Shortridge, J., 2019. Observed trends in daily rainfall variability result in more severe climate change impacts to agriculture. Climatic Change, 157(3), 429-444. DOI:

    Smirnoff, N., Colombe, S.V., 1988. Drought influences the activity of enzymes of the chloroplast hydrogen peroxide scavenging system. Journal of Experimental Botany, 39(201), 1097-1108.

    Sukumaran, S., Kumar, S., Dinesh, D., Sheoran, S., Gupta, R., Sehgal, D., 2022. Nutri-cereals: Importance, diversification and future prospects in global food and nutritional security. Frontiers in Sustainable Food Systems, 6, 820-903.

    Ugare, R., Chimmad, B., Naik, R., Bharati, P., Itagi, S., 2014. Glycemic index and significance of barnyard millet (Echinochloa frumentacae) in type II diabetics. J. Food Sci. Technol., 51(2), 392-395. DOI:

    Upadhyaya, H.D., Vetriventhan, M., Azevedo, V.C.R., 2021. Variation for photoperiod and temperature sensitivity in the global mini core collection of sorghum. Frontiers in Plant Science, 12, 571243. DOI:

    van der Weerd, L., van Eeuwijk, F.A., Pangga, I.B., 2001. Membrane permeability dynamics for water in pearl millet compared to that in maize. Plant and Soil, 233(1), 107-116.

    Vanniarajan, C., Anand, G., Kanchana, S., Giridhari, V.V.A., Renganathan, V.G., 2018. A short duration high yielding culture - Barnyard millet ACM10145. Agricultural Science Digest, 38(2), 123-126. DOI:

    Varshney, R. K., Shi, C., Thudi, M., Mariac, C., Wallace, J., Qi, P., Zhang, H., Zhao, Y., Singh, R., Chitikineni, A. K., Yan, M. K., Bajaj, P., Punnuri, S., Gupta, S. K., Gaur, P., Kavi Kishor, P. B., Shah, T., Subramaniam, S., Yadav, O. P., Xu, X., Yadav, R. S., 2017. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature Biotechnology, 35(10), 969-976. DOI:

    Varshney, R.K., Terauchi, R., McCouch, S.R., 2014. Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biology, 12(6), e1001883. DOI:

    Weckwerth, W., Ghatak, A., Bellaire, A., Chaturvedi, P., Varshney, R.K., 2020. PANOMICS meets germplasm. Plant Biotechnol. J., 18(7), 1507-1525. DOI:

    Wu, Y., Messing, J., Tan, B.C., 2011. C4 grasses: the smart choice for biofuel production in a changing climate. Journal of Cereal Science, 53(3), 365-372.

    Yadav, C.B., Bonthala, V.S., Muthamilarasan, M., Prasad, M., 2015. Development of genome-wide informative simple sequence repeat markers for large-scale genotyping applications in foxtail millet. Plant Breeding, 134(6), 735-741.

    Zhang, G., Liu, X., Quan, Z., Cheng, S., Xu, X., Pan, S., Xie, M., Li, F., Liu, G., Jing, H., Lin, L., Liao, S., 2012. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology,32, 549-554. DOI: