Journal of Innovative Agriculture, Volume 11, Issue 1 : 12-17. Doi : 10.37446/jinagri/rsa/11.1.2024.12-17
Research Article

OPEN ACCESS | Published on : 31-Mar-2024

Phytochemical analysis through GC-MS in Mimosa pudica

  • Jaivenkat Srinivasan
  • SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Vendhar Nagar, Baburyanpettai, Tamil Nadu, India.
  • Linsa Raani Anand
  • SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Vendhar Nagar, Baburyanpettai, Tamil Nadu, India.
  • Gunaseelan Poochandiran
  • SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Vendhar Nagar, Baburyanpettai, Tamil Nadu, India.
  • Tharun Aravinthan Sankar
  • SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Vendhar Nagar, Baburyanpettai, Tamil Nadu, India.
  • Nitheeshwaran Thayuman
  • SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Vendhar Nagar, Baburyanpettai, Tamil Nadu, India.
  • Ambika Singaram
  • SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Vendhar Nagar, Baburyanpettai, Tamil Nadu, India.
  • Bharathi Raja Ramadoss
  • Bioriginal Food and Science Corporation, Saskatoon, SK S7J 0R1, Canada.
  • Dhanarajan Arulbalachandran
  • Division of Crop Molecular Breeding and Stress Physiology, Department of Botany, School of Life Sciences, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, India.
  • Selvakumar Gurunathan
  • SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Vendhar Nagar, Baburyanpettai, Tamil Nadu, India.

Abstract

Background: The aim of the study to identify the photochemical present in the Mimosa pudica plant present in the premises of SRM College of Agricultural Sciences, Chengalpattu district, Tamil Nadu, India. 

Methods: Leaves, stem and root samples were used for the methanol extraction and the crude extract was subjected into the GCMS analysis. 

Results: The results revealed the presence of Mome inositol; Guanosine; 3-o-methyl-D-fructose; Ether butyl isopentyl; Methyl.beta.-d-ribofuranoside; 3,4-Dichloroatropine etc., in the plant parts.

Conclusion: This study to be carried out to find out the maximum number of compounds present in this plant through the derivatization process.

Keywords

Phytochemical, GC-MS, Mimosa pudica, medicinal plant, metabolite profiling

References

  • Aalok, P. K. (1997). Lajjalu-an indispensable drug for blood pressure. Sachitra Ayurved50(1), 21-2.

    Ahmad, H., Sehgal, S., Mishra, A., & Gupta, R. (2012). Mimosa pudica L. (Laajvanti): an overview. Pharmacognosy Reviews6(12), 115.

    Amalraj, T., & Ignacimuthu, S. (2002). Hyperglycemic effect of leaves of Mimosa pudica Linn. Fitoterapia73(4), 351-352.

    Ambikapathy, V., & Gomathi, S. (2011). Effect of antifungal activity of some medicinal plants against Pythium debaryanum (Hesse). Asian Journal of Plant Science & Research.

    Autore, G., Caruso, A., Marzocco, S., Nicolaus, B., Palladino, C., Pinto, A., ... & Saturnino, C. (2010). Acetamide derivatives with antioxidant activity and potential anti-inflammatory activity. Molecules15(3), 2028-2038.

    Balakrishnan, N., Suresh, D., Pandian, G. S., Edwin, E., & Sheeja, E. (2006). Antidiarrhoeal potential of Mimosa pudica root extracts. Indian Journal of Natural Products22(2), 21-23.

    Berest, G. G., Voskoboynik, O. Y., Kovalenko, S. I., Antypenko, O. M., Nosulenko, I. S., Katsev, A. M., & Shandrovskaya, O. S. (2011). Synthesis and biological activity of novel N-cycloalkyl-(cycloalkylaryl)-2-[(3-R-2-oxo-2H-[1, 2, 4] triazino [2, 3-c] quinazoline-6-yl) thio] acetamides. European Journal of Medicinal Chemistry46(12), 6066-6074.

    Bum, E. N., Dawack, D. L., Schmutz, M., Rakotonirina, A., Rakotonirina, S. V., Portet, C., ... & Herrling, P. (2004). Anticonvulsant activity of Mimosa pudica decoction. Fitoterapia75(3-4), 309-314.

    Chinmoy, B., & Nongmaithem, R. C. (2019). The sensitive plant Mimosa pudica: A useful weed. International Journal of Scientific Development and Research4(5), 3.

    Das, S., Vasudeva, N., & Sharma, S. (2014). Chemical composition of ethanol extract of Macrotyloma uniflorum (Lam.) Verdc. using GC-MS spectroscopy. Organic and medicinal chemistry letters4(1), 13.

    Dinda, B., Bhattacharya, A., De, U. C., Arima, S., Takayanagi, H., & Harigaya, Y. (2006). Antimicrobial C‑glucoside from aerial parts of Diospyros nigra. Chemical & Pharmaceutical Bulletin, 54(5), 679–681.

    Fernie, A. R., Carrari, F., & Sweetlove, L. J. (2004). Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Current opinion in plant biology7(3), 254-261.

    Ganguly, R., Brotherton, M. S., Cales, S., Scoggins, B., Shang, Z., & Vestergaard, M. (2007). Outflows and the physical properties of quasars. The Astrophysical Journal665(2), 990.

    Ghani, A. (2003). Medicinal plants of Bangladesh with chemical constituents and uses. Asiatic society of Bangladesh.

    Gopalakrishnan, K., & Udayakumar, R. (2014). GC-MS Analysis of Phytocompounds of Leaf and Stem of Marsilea quadrifolia (L.). Int J Biochem Res Rev., 4(6), 517–526.

    Hemadri, K., & Rao, S. S. (1983). Leucorrhoea and menorrhagia: Tribal medicine. Ancient Science of Life3(1), 40-41.

    Herzfeld, D. J., Kojima, Y., Soetedjo, R., & Shadmehr, R. (2015). Encoding of action by the Purkinje cells of the cerebellum. Nature526(7573), 439-442.

    Hussein, E. M., Al-Rooqi, M. M., Abd El-Galil, S. M., & Ahmed, S. A. (2019). Design, synthesis, and biological evaluation of novel N 4-substituted sulfonamides: acetamides derivatives as dihydrofolate reductase (DHFR) inhibitors. BMC chemistry13(1), 91.

    Kell, D. B., Brown, M., Davey, H. M., Dunn, W. B., Spasic, I., & Oliver, S. G. (2005). Metabolic footprinting and systems biology: the medium is the message. Nature Reviews Microbiology3(7), 557-565.

    Kirk, L. F., Møller, M. V., Christensen, J., Stærk, D., Ekpe, P., & Jaroszewski, J. W. (2003). A 5-deoxyflavonol derivative in Mimosa pudicaBiochemical Systematics and Ecology31(1), 103-106.

    Liu, Z., Zhou, Z., Tian, W., Fan, X., Xue, D., Yu, L., ... & Long, Y. Q. (2012). Discovery of novel 2‐N‐aryl‐substituted benzenesulfonamidoacetamides: orally bioavailable tubulin polymerization inhibitors with marked antitumor activities. ChemMedChem7(4), 680-693.

    Mahanta, M., & Mukherjee, A. K. (2001). Neutralisation of lethality, myotoxicity and toxic enzymes of Naja kaouthia venom by Mimosa pudica root extracts. Journal of ethnopharmacology75(1), 55-60. 

    Marimuthu, S., Rahuman, A. A., Rajakumar, G., Santhoshkumar, T., Kirthi, A. V., Jayaseelan, C., ... & Kamaraj, C. (2011). Evaluation of green synthesized silver nanoparticles against parasites. Parasitology Research108(6), 1541-1549.

    McCarthy, O., Musso-Buendia, A., Kaiser, M., Brun, R., Ruiz-Perez, L. M., Johansson, N. G., ... & Gilbert, I. H. (2009). Design, synthesis and evaluation of novel uracil acetamide derivatives as potential inhibitors of Plasmodium falciparum dUTP nucleotidohydrolase. European journal of medicinal chemistry44(2), 678-688. 

    Mohan, K. M., Wolfe, C. D., Rudd, A. G., Heuschmann, P. U., Kolominsky-Rabas, P. L., & Grieve, A. P. (2011). Risk and cumulative risk of stroke recurrence: a systematic review and meta-analysis. Stroke42(5), 1489-1494.

    Norton, S. P. (1978). Anti-fertility activity of leaves of Mimosa pudica linn. in early-pregnancy of albino-rats. Indian Journal of Zoology6(2), 89-93.

    Prasanna, K. S., Bashith, M. A., & Sucharitha, S. (2009). Consumer satisfaction about hospital services: A study from the outpatient department of a private medical college hospital at Mangaluru. Indian Journal of Community Medicine, 34(2), 156–159.

    Sabithira, G., & Udayakumar, R. (2017). GC-MS analysis of methanolic extracts of leaf and stem of Marsilea minuta (Linn.). Journal of Complementary and Alternative Medical Research3(1), 1-13.

    Singh, A., & Singh, P. K. (2009). An ethnobotanical study of medicinal plants in Chandauli District of Uttar Pradesh, India. Journal of Ethnopharmacology121(2), 324-329.

    Sriram, M. I., Kalishwaralal, K., Deepak, V., Gracerosepat, R., Srisakthi, K., & Gurunathan, S. (2011). Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloids and Surfaces B: Biointerfaces85(2), 174-181.

    Tamilarasi, T., & Ananthi, T. (2012). Phytochemical Analysis and Anti Microbial Activity of Mimosa pudica Linn. Research Journal of Chemical Sciences, ISSN2231, 606X.

    Vaidya, G. H., & Sheth, U. K. (1986). Mimosa pudica (Linn.) its medicinal value and pilot clinical use in patients with menorrhagia. Ancient Science of life5(3), 156-160.

    Valsala, S., & Karpagaganapathy, P. R. (2002). Effect of Mimosa pudica root powder on oestrous cycle and ovulation in cycling female albino rat, Rattus norvegicusPhytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives16(2), 190-192.

    Vennila, V., & Udayakumar, R. (2015). GC-MS analysis of leaf, fruits and latex of Croton bonplandianum Baill. International Journal of Biochemistry Research & Review5(3), 187-197.

    Vidhya, R., & Udayakumar, R. (2015). Gas chromatography-Mass spectrometry (GC-MS) analysis of ethanolic extracts of Aerva lanata (L.). International Journal of Biochemistry Research & Review7(4), 192-203.

    Volkov, A. G., Foster, J. C., & Markin, V. S. (2010a). Signal transduction in Mimosa pudica: biologically closed electrical circuits. Plant, cell & environment33(5), 816-827.

    Volkov, A. G., Foster, J. C., Baker, K. D., & Markin, V. S. (2010b). Mechanical and electrical anisotropy in Mimosa pudica pulviniPlant signaling & behavior5(10), 1211-1221.