Peer Reviewed Open Access Journal
ISSN: 2394-5389 NAAS: 4.05
Submit ManuscriptBackground: The interest in spirulina lies due to its high level of protein and mineral content besides its excellent functionality and health promoting characteristics.
Methods: Spirulina powder was added to milk at different levels 0.3 and 0.5% respectively. Analysis of variance (ANOVA) with a least significant difference (LSD) test was applied for multiple sample comparisons to test for any significant differences (p≤0.05) in the mean values of all the groups.
Results: The average chemical composition of spirulina powder showed protein 68%, fat 6%, ash 9%, moisture 3%, carbohydrate (by difference) 14%, Iron 980 ppm and calcium 685 ppm. Gamma Linolenic acid (GLA) was found as a major fatty acid i.e.30mg/gm in spirulina powder.
Conclusion: An increase in protein content 0.76 %, essential fatty acid 8.02%, iron 5.16 ppm and calcium 137.37ppm, and gamma Linolenic acid at both the levels of spirulina powder addition in milk was observed when compared with control during the storage at refrigeration temperature over a period of 6 days. Separation of milk protein containing spirulina powder was carried out using SDS-PAGE. It showed that milk protein bands interact with spirulina proteins near 19 kDa.
flavoured milk, spirulina powder, storage study, sensory characteristics
Ackman, R. G., Ratnayake, W. M. N., & Olsson, B. (1988). The “basic” fatty acid composition of Atlantic fish oils: potential similarities useful for enrichment of polyunsaturated fatty acids by urea complexation. Journal of the American Oil Chemists' Society, 65(1), 136-138.
Amerine, M. A., Roessler, E. B., & Ough, C. S. (1965). Acids and the acid taste. I. The effect of pH and titratable acidity. American Journal of Enology and viticulture, 16(1), 29-37.
Boukhari, N., Doumandji, A., Sabrine Ait chaouche, F., & Ferradji, A. (2018). Effect of ultrasound treatment on protein content and functional properties of Spirulina powder grown in Algeria. Mediterranean Journal of Nutrition and Metabolism, 11(3), 235-249.
Calder, P.C. (2015) Marine Omega-3 Fatty Acids and Inflammatory Processes: Effects, Mechanisms and Clinical Relevance. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1851, 469-484.
Chamorro, G., Salazar, M., Favila, L., & Bourges, H. (1996). Pharmacology and toxicology of Spirulina alga. Revista De Investigacion Clinica; Organo Del Hospital De Enfermedades De La Nutricion, 48(5), 389-399.
Chang, C. Y., Ke, D. S., & Chen, J. Y. (2009). Essential fatty acids and human brain. Acta Neurol Taiwan, 18(4), 231-41.
Choopani, A., Poorsoltan, M., Fazilati, M., Latifi, A. M., & Salavati, H. (2016). Spirulina: a source of gamma-linoleic acid and its applications. Journal of Applied Biotechnology Reports, 3(4), 483-488.
Das, U. N. (2003). Long-chain polyunsaturated fatty acids in the growth and development of the brain and memory. Nutrition, 19(1), 62-65.
De Oliveira, T. T. B., dos Reis, I. M., de Souza, M. B., da Silva Bispo, E., Maciel, L. F., Druzian, J. I., ... & de Santana, L. R. R. (2021). Microencapsulation of Spirulina sp. LEB-18 and its incorporation in chocolate milk: Properties and functional potential. Lwt, 148, 111674.
de Wit, J. N., & Swinkels, G. A. M. (1980). A differential scanning calorimetric study of the thermal denaturation of bovine β-lactoglobulin: Thermal behaviour at temperatures up to 100 °C. Biochimica et Biophysica Acta, 624(1), 40–50.
Dewey, K. G. (2001). Maternal and fetal stress are associated with impaired lactogenesis in humans. The Journal of nutrition, 131(11), 3012S-3015S.
Fatima, A., & Srivastava, S. (2017). Role of essential amino acids in human body and its presence in spirulina. International Journal of Applied Home Science, 4(9 & 10), 839–845.
Freidenreich, P., Apell, G. S., & Glazer, A. N. (1978). Structural studies on phycobiliproteins II. C-phycocyanin: amino acid sequence of the beta subunit. Specific cleavage of the alpha subunit. Journal of Biological Chemistry, 253(1), 212–219.
Harrigan, W.F. (1998). Laboratory methods in food microbiology (3rd ed). Academic Press, London.
Harrigan, W.F., & McCance, M.E. (1976). Laboratory methods in food and dairy microbiology. Academic Press, London.
Innis, S. M. (2008). Dietary omega 3 fatty acids and the developing brain. Brain research, 1237, 35-43.
Iverson, S. J., Lang, S. L., & Cooper, M. H. (2001). Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids, 36(11), 1283-1287.
Janda-Milczarek, K., Szymczykowska, K., Jakubczyk, K., Kupnicka, P., Skonieczna-Żydecka, K., Pilarczyk, B., ... & Dalewski, B. (2023). Spirulina supplements as a source of mineral nutrients in the daily diet. Applied Sciences, 13(2), 1011.
Kalpana, K., Kusuma, D. L., Rishi Lal, P., & Khanna, G. L. (2017). Impact of spirulina on exercise induced oxidative stress and post exercise recovery heart rate of athletes in comparison to a commercial antioxidant. Food & Nutrition Journal, 2, 139.
Leaf, A., & Weber, P. C. (1988). Cardiovascular effects of n-3 fatty acids. New England Journal of Medicine, 318(9), 549-557.
MacColl, R. (1983). Stability of allophycocyanin's quaternary structure. Archives of Biochemistry and Biophysics, 223(1), 24-32.
Malik, P., Kempanna, C., & Paul, A. (2013). Quality characteristics of ice cream enriched with Spirulina powder. International Journal of Food and Nutrition Science, 2(1), 44-50.
Metin, O., Mazumder, V., Ozkar, S., & Sun, S. (2010). Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane. Journal of the American Chemical Society, 132(5), 1468-1469.
Mohiti, S., Zarezadeh, M., Naeini, F., Tutunchi, H., Ostadrahimi, A., Ghoreishi, Z., & Ebrahimi Mamaghani, M. (2021). Spirulina supplementation and oxidative stress and pro‐inflammatory biomarkers: A systematic review and meta‐analysis of controlled clinical trials. Clinical and Experimental Pharmacology and Physiology, 48(8), 1059-1069.
Patel, A., Mishra, S., & Ghosh, P. K. (2006). Antioxidant potential of C-phycocyanin isolated from cyanobacterial species Lyngbya, Phormidium and Spirulina spp. Indian Journal of Biochemistry and Biophysics, 43(1), 25-31.
Prabakaran, G., Sampathkumar, P., Kavisri, M., & Moovendhan, M. (2020). Extraction and characterization of phycocyanin from Spirulina platensis and evaluation of its anticancer, antidiabetic and antiinflammatory effect. International journal of biological macromolecules, 153, 256-263.
Ramasamy, D., & Shibu, A.V. (1999). Dairy technologist handbook, Lucknow: International book distribution company, pp 72-73.
Ranganna, S. (1986). Handbook of analysis and quality control for fruit and vegetable products. Tata McGraw-Hill Education.
Roy, N. K., & Sen, D. C. (1994). Chemical Analysis of Fluid Milk. Textbook of Practical Dairy Chemistry, 1, 22-25.
Sánchez, M., Bernal-Castillo, J., Rozo, C., & Rodríguez, I. (2003). Spirulina (Arthrospira): an edible microorganism: a review. Universitas Scientiarum, 8(1), 7-24.
Seyidoglu, N., Inan, S., & Aydin, C. (2017). A prominent superfood: Spirulina platensis. Superfood and functional food-the development of superfoods and their roles as medicine, 22, 1-27.
Shahidi, F., & Miraliakbari, H. (2004). Omega-3 (n‑3) fatty acids in health and disease: Part 1 — cardiovascular disease and cancer. Journal of Medicinal Food, 7(4), 387–401.
Sharoba, A. M. (2014). Nutritional value of Spirulina and its use in the preparation of some complementary baby food formulas. Journal of food and dairy sciences, 5(8), 517-538.
Silva, L. L. S., Augusto, R. A., Tietzmann, D. C., Sequeira, L. A. S., Hadler, M. C. C. M., Muniz, P. T., de Lira, P. I. C., & Cardoso, M. A.; ENFAC Working Group. (2017). The impact of home fortification with multiple micronutrient powder on vitamin A status in young children: A multicentre pragmatic controlled trial in Brazil. Maternal & Child Nutrition, 13(4), e12403.
Sorrenti, V., Castagna, D. A., Fortinguerra, S., Buriani, A., Scapagnini, G., & Willcox, D. C. (2021). Spirulina microalgae and brain health: A scoping review of experimental and clinical evidence. Marine drugs, 19(6), 293.
Tokusoglu, O., & Unal, M. K. (2003). Fat replacers in meat products. Pakistan Journal of Nutrition, 2(3), 196-203.
Trotta, T., Porro, C., Cianciulli, A., & Panaro, M. A. (2022). Beneficial effects of spirulina consumption on brain health. Nutrients, 14(3), 676.
Xiao, N., Huang, X., He, W., Yao, Y., Wu, N., Xu, M., ... & Tu, Y. (2021). A review on recent advances of egg byproducts: Preparation, functional properties, biological activities and food applications. Food Research International, 147, 110563.
Yi, J., Fu, R., Tao, J., Nie, S., Ma, H., Wang, C., ... & Li, H. (2022). Add 2022: the first audio deep synthesis detection challenge. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 9216-9220). IEEE.
Yoo, K., Welden, R., Hewett, K., & Haenlein, M. (2023). The merchants of meta: A research agenda to understand the future of retailing in the metaverse. Journal of Retailing, 99(2), 173-192.
Zhou, T., Liu, Y., Wang, Q., Dou, Q., Li, X., Pan, Y., ... & Xue, T. (2021). Spirulina platensis alleviates high fat diet-induced cognitive impairment in mice via the gut-brain axis. Journal of functional foods, 86, 104706.
