Journal of Innovative Agriculture, Volume 9, Issue 3 : 1-28. Doi : 10.37446/jinagri/ra/9.3.2022.1-28
Review Article

OPEN ACCESS | Published on : 30-Sep-2022

Soybean improvement through stress resistance and new plant breeding technologies

  • Kamran Arshad
  • Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan.
  • Maham Sajid
  • Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan.
  • Tayyaba Sajid
  • Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan.
  • Faiza Mubarak
  • Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan.
  • Mehrab Ijaz
  • Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan.
  • Umar Azam
  • Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan.
  • Ali Haider
  • Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan.


Soybean belongs to the Leguminosae family having great nutritional value. It is considered to be a multipurpose crop used as food, feed, and fuel. Soybean as BNF (Biological Nitrogen Fixation) plant increases soil fertility through root nodule bacteria. Conventional breeding was used for improvement in crops in the past. But now scientists are working on soybean improvement through Genetic engineering (GE) to satisfy the global food demand. Genetic engineering methods i.e. gene silencing and transgenesis have reduced many risks and helped to increase soybean resilience. Recently, new plant breeding technologies (NBPTs) like transcription activator-like effector nucleases, zinc finger nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR Cas9) appeared that are the basis for genetic improvement in soybean. These NBPTs proved beneficial in the improvement of soybean through precision genome engineering and gene functional characterization. These NBPTs have also covered the ethical and public acceptance problems about GE and transgenesis in soybean. In this review, we have provided a comprehensive note about stress resistance, nutritional enhancement of transgenic soybean, GE, and NBPTs, and their prospects.


soybean, new plant breeding technologies, genetic engineering, stress resistance


  • Al Amin, N., Ahmad, N., Nan, W., Xiuming, F., Nan, W., Xiaoxue, B., Tong, M., & Piwu, W., (2018). An efficient transient assay for CRISPR CAS9 system delivering targeted mutation using synthetic oligo SgRNA in soybean (Glycine max). Pak. J. Bot., 50(6), 2223-2230.

    An, J., Cheng, C., Hu, Z., Chen, H., Cai, W., & Yu, B., (2018). The Panax ginseng PgTIP1 gene confers enhanced salt and drought tolerance to transgenic soybean plants by maintaining homeostasis of water, salt ions and ROS. Environmental and experimental botany, 155, 45-55.

    Anzalone, A.V., Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson, C., Newby, G.A., & Raguram, A. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 576(7785), 149-157.

    Bai, M., Yuan, J., Kuang, H., Gong, P., Li, S., Zhang, Z., Liu, B., Sun, J., Yang, M., & Yang, L. (2020). Generation of a multiplex mutagenesis population via pooled CRISPR‐Cas9 in soya bean. Plant Biotechnology Journal, 18(3), 721-731.

    Bailey-Serres, J., Parker, J.E., Ainsworth, E.A., Oldroyd, G.E., & Schroeder, J.I. (2019). Genetic strategies for improving crop yields. Nature, 575(7781), 109-118.

    Baltes, N.J., Gil-Humanes, J., Cermak, T., Atkins, P.A., & Voytas, D.F. (2014). DNA replicons for plant genome engineering. The Plant Cell, 26(1), 151-163.

    Banerjee, J., Singh, Y., & Shrivastava, M. K. (2021). Mutagenesis in soybean: A review. The Pharma Innovation Journal, 10(6): 322-327

    Bao, A., Chen, H., Chen, L., Chen, S., Hao, Q., Guo, W., Qiu, D., Shan, Z., Yang, Z., & Yuan, S. (2019). CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC plant biology, 19(1), 1-12.

    Bao, A., Zhang, C., Huang, Y., Chen, H., Zhou, X., Cao, D. (2020). Genome editing technology and application in soybean improvement. Oil Crop Science 5(1), 31-40.

    Belhaj, K., Chaparro-Garcia, A., Kamoun, S., & Nekrasov, V. (2013). Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant methods, 9(1), 1-10.

    Bitinaite, J., Wah, D.A., Aggarwal, A.K., & Schildkraut, I. (1998). Fok I dimerization is required for DNA cleavage. Proceedings of the national academy of sciences, 95(18), 10570-10575.

    Bleuyard, J.-Y., Gallego, M.E., & White, C.I. (2006). Recent advances in understanding of the DNA double-strand break repair machinery of plants. DNA repair, 5(1), 1-12.

    Boch, J., & Bonas, U. (2010). Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annual review of phytopathology, 48, 419-436.

    Bogdanove, A.J., Schornack, S., Lahaye, T. (2010). TAL effectors: finding plant genes for disease and defense. Current opinion in plant biology, 13(4), 394-401.

    Bonawitz, N.D., Ainley, W.M., Itaya, A., Chennareddy, S.R., Cicak, T., Effinger, K., Jiang, K., Mall, T.K., Marri, P.R., & Samuel, J.P. (2019). Zinc finger nuclease‐mediated targeting of multiple transgenes to an endogenous soybean genomic locus via non‐homologous end joining. Plant biotechnology journal, 17(4), 750-761.

    Burton, J., 2022. Breeding soybeans for improved protein quantity and quality, World Soybean Research Conference III: Proceedings. CRC Press, pp. 361-367.

    Cahoon, E.B. (2003). Genetic enhancement of soybean oil for industrial uses: prospects and challenges.

    Cai, Y., Chen, L., Liu, X., Guo, C., Sun, S., Wu, C., Jiang, B., Han, T., Hou, W., 2018. CRISPR/Cas9‐mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant biotechnology journal 16(1), 176-185.

    Cai, Y., Chen, L., Liu, X., Sun, S., Wu, C., Jiang, B., Han, T., & Hou, W. (2015). CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One, 10(8), e0136064.

    Cai, Y., Chen, L., Zhang, Y., Yuan, S., Su, Q., Sun, S., Wu, C., Yao, W., Han, T., & Hou, W. (2020a). Target base editing in soybean using a modified CRISPR/Cas9 system. Plant Biotechnology Journal, 18(10), 1996.

    Cai, Y., Wang, L., Chen, L., Wu, T., Liu, L., Sun, S., Wu, C., Yao, W., Jiang, B., & Yuan, S. (2020b). Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant biotechnology journal, 18(1), 298-309.

    Campbell, B.W., Hoyle, J.W., Bucciarelli, B., Stec, A.O., Samac, D.A., Parrott, W.A., & Stupar, R.M. (2019). Functional analysis and development of a CRISPR/Cas9 allelic series for a CPR5 ortholog necessary for proper growth of soybean trichomes. Scientific reports, 9(1), 1-11.

    Cermak, T., Doyle, E.L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J.A., Somia, N.V., Bogdanove, A.J., & Voytas, D.F. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic acids research, 39(12), e82-e82.

    Cheng, Q., Dong, L., Su, T., Li, T., Gan, Z., Nan, H., Lu, S., Fang, C., Kong, L. & Li, H. (2019). CRISPR/Cas9-mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean. BMC plant biology, 19(1), 1-11.

    Cho, E.-K., & Goodman, R.M. (1979). Strains of soybean mosaic virus: classification based on virulence in resistant soybean cultivars. Phytopathology, 69(5), 467-470.

    Christian, M., Cermak, T., Doyle, E.L., Schmidt, C., Zhang, F., Hummel, A., Bogdanove, A.J., & Voytas, D.F. (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 186(2), 757-761.

    Curtin, S.J., Voytas, D.F., & Stupar, R.M. (2012). Genome engineering of crops with designer nucleases. The Plant Genome, 5(2).

    Curtin, S.J., Xiong, Y., Michno, J.M., Campbell, B.W., Stec, A.O., Čermák, T., Starker, C., Voytas, D.F., Eamens, A.L., & Stupar, R.M. (2018). Crispr/cas9 and talen s generate heritable mutations for genes involved in small rna processing of glycine max and medicago truncatula. Plant biotechnology journal, 16(6), 1125-1137.

    Curtin, S.J., Zhang, F., Sander, J.D., Haun, W.J., Starker, C., Baltes, N.J., Reyon, D., Dahlborg, E.J., Goodwin, M.J., & Coffman, A.P. (2011). Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant physiology, 156(2), 466-473.

    de Freitas, V.F., Cerezini, P., Hungria, M., & Nogueira, M.A. (2022). Strategies to deal with drought-stress in biological nitrogen fixation in soybean. Applied Soil Ecology, 172, 104352.

    de Souza, L.T., de Castro, S.A.Q., de Andrade, J.F., Politano, A.A., Meneghetti, E.C., Favarin, J.L., de Almeida, M., Mazzafera, P., 2021. Drought stress induces changes in the physiology and root system of soybean plants. Brazilian Journal of Botany, 1-11.

    Demorest, Z.L., Coffman, A., Baltes, N.J., Stoddard, T.J., Clasen, B.M., Luo, S., Retterath, A., Yabandith, A., Gamo, M.E., & Bissen, J. (2016). Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC plant biology 16(1), 1-8.

    Deshmukh, R., Sonah, H., Patil, G., Chen, W., Prince, S., Mutava, R., Vuong, T., Valliyodan, B., & Nguyen, H.T. (2014). Integrating omic approaches for abiotic stress tolerance in soybean. Frontiers in Plant science, 5, 244.

    Di, Y.-H., Sun, X.-J., Hu, Z., Jiang, Q.-Y., Song, G.-H., Zhang, B., Zhao, S.-S., Zhang, H., 2019. Enhancing the CRISPR/Cas9 system based on multiple GmU6 promoters in soybean. Biochemical and Biophysical Research Communications, 519(4), 819-823.

    Ding, X., Guo, J., Zhang, Q., Yu, L., Zhao, T., Yang, S. (2021). Heat-responsive miRNAs participate in the regulation of male fertility stability in soybean CMS-Based F1 under high temperature stress. International journal of molecular sciences, 22(5), 2446.

    Ding, X., Guo, Q., Li, Q., Gai, J., & Yang, S. (2020). Comparative transcriptomics analysis and functional study reveal important role of high-temperature stress response gene GmHSFA2 during flower bud development of CMS-based F1 in soybean. Frontiers in plant science, 11, 600217.

    Djanaguiraman, M., Prasad, P.V., Boyle, D., & Schapaugh, W. (2013). Soybean pollen anatomy, viability and pod set under high temperature stress. Journal of Agronomy and Crop Science, 199(3), 171-177.

    Do, P.T., Nguyen, C.X., Bui, H.T., Tran, L.T., Stacey, G., Gillman, J.D., Zhang, Z.J., & Stacey, M.G. (2019). Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2–1A and GmFAD2–1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC plant biology, 19(1), 1-14.

    Du, H., Zeng, X., Zhao, M., Cui, X., Wang, Q., Yang, H., Cheng, H., Yu, D., 2016. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. Journal of biotechnology 217, 90-97.

    Fujiwara, T., Hirai, M.Y., Chino, M., Komeda, Y., Naito, S., 1992. Effects of sulfur nutrition on expression of the soybean seed storage protein genes in transgenic petunia. Plant Physiology 99(1), 263-268.

    Garg, M., Sharma, N., Sharma, S., Kapoor, P., Kumar, A., Chunduri, V., & Arora, P. (2018). Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Frontiers in Nutrition, 12.

    Haun, W., Coffman, A., Clasen, B.M., Demorest, Z.L., Lowy, A., Ray, E., Retterath, A., Stoddard, T., Juillerat, A., & Cedrone, F. (2014). Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant biotechnology journal, 12(7), 934-940.

    Higley, L.G.B.D.J.E.S.o.A., 1994. Handbook of soybean insect pests. Entomological Society of America, Lanham, MD.

    Hill, C., Chirumamilla, A., Hartman, G. (2012). Resistance and virulence in the soybean-Aphis glycines interaction. Euphytica, 186(3), 635-646.

    Hinchee, M.A., Connor-Ward, D.V., Newell, C.A., McDonnell, R.E., Sato, S.J., Gasser, C.S., Fischhoff, D.A., Re, D.B., Fraley, R.T., & Horsch, R.B. (1988). Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/technology, 6(8), 915-922.

    Hodgson, J.M., Croft, K.D., Puddey, I.B., Mori, T.A., & Beilin, L.J. (1996). Soybean isoflavonoids and their metabolic products inhibit in vitro lipoprotein oxidation in serum. The Journal of Nutritional Biochemistry, 7(12), 664-669.

    Hsu, P.D., Lander, E.S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262-1278.

    Hymowitz, T. (2022). Anti-nutritional factors in soybeans: genetics and breeding, World Soybean Research Conference III: Proceedings. CRC Press, pp. 368-373.

    Jacobs, T.B., LaFayette, P.R., Schmitz, R.J., & Parrott, W.A. (2015). Targeted genome modifications in soybean with CRISPR/Cas9. BMC biotechnology, 15(1), 1-10.

    Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821.

    Johnson, H.W., Hartwig, E., & Cartter, J.L. (1967). Growing soybeans. US Government Printing Office.

    Joung, J.K., & Sander, J.D. (2013). TALENs: a widely applicable technology for targeted genome editing. Nature reviews Molecular cell biology, 14(1), 49-55.

    Kanazashi, Y., Hirose, A., Takahashi, I., Mikami, M., Endo, M., Hirose, S., Toki, S., Kaga, A., Naito, K., & Ishimoto, M. (2018). Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA. Plant cell reports, 37(3), 553-563.

    Katam, R., Shokri, S., Murthy, N., Singh, S.K., Suravajhala, P., Khan, M.N., Bahmani, M., Sakata, K., & Reddy, K.R. (2020). Proteomics, physiological, and biochemical analysis of cross tolerance mechanisms in response to heat and water stresses in soybean. Plos one, 15(6), e0233905.

    Kim, H., & Choi, J. (2021). A robust and practical CRISPR/crRNA screening system for soybean cultivar editing using LbCpf1 ribonucleoproteins. Plant Cell Reports, 40(6), 1059-1070.

    Kim, H., Kim, S.-T., Ryu, J., Kang, B.-C., Kim, J.-S., & Kim, S.-G. (2017). CRISPR/Cpf1-mediated DNA-free plant genome editing. Nature communications, 8(1), 1-7.

    Kim, M.-J., Kim, J.K., Kim, H.J., Pak, J.H., Lee, J.-H., Kim, D.-H., Choi, H.K., Jung, H.W., Lee, J.-D., & Chung, Y.-S. (2012). Genetic modification of the soybean to enhance the β-carotene content through seed-specific expression. PLoS One, 7(10), e48287.

    Komatsu, K., Takahashi, M., Nakazawa, Y., 2010. Genetic study on resistance to the common cutworm and other leaf-eating insects in soybean. Japan Agricultural Research Quarterly: JARQ 44(2), 117-125.

    Koonin, E.V., & Makarova, K.S. (2009). CRISPR-Cas: an adaptive immunity system in prokaryotes. F1000 biology reports, 1.

    Kunert, K.J., Vorster, B.J., Fenta, B.A., Kibido, T., Dionisio, G., & Foyer, C.H. (2016). Drought stress responses in soybean roots and nodules. Frontiers in plant science, 7, 1015.

    Lal, S., Rana, V., Sapra, R., & Singh, K. (2005). Screening and utilization of soybean germplasm for breeding resistance against Mungbean Yellow Mosaic Virus. Soybean Genet News Lett., 1, 32.

    Le, D.T., Nishiyama, R., Watanabe, Y., Tanaka, M., Seki, M., Ham, L.H., Yamaguchi-Shinozaki, K., Shinozaki, K., & Tran, L.-S.P. (2012). Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PloS one, 7(11), e49522.

    Lee, H., Park, S.-Y., & Zhang, Z.J. (2013). An overview of genetic transformation of soybean. IntechOpen.

    Li, C., Li, Y.-h., Li, Y., Lu, H., Hong, H., Tian, Y., Li, H., Zhao, T., Zhou, X., & Liu, J. (2020). A domestication-associated gene GmPRR3b regulates the circadian clock and flowering time in soybean. Molecular plant, 13(5), 745-759.

    Li, C., Nguyen, V., Liu, J., Fu, W., Chen, C., Yu, K., & Cui, Y. (2019). Mutagenesis of seed storage protein genes in Soybean using CRISPR/Cas9. BMC research notes, 12(1), 1-7.

    Li, T., Liu, B., Spalding, M.H., Weeks, D.P., & Yang, B. (2012). High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature biotechnology, 30(5), 390-392.

    Li, T.Y., Zhang, Y., Liu, H., Wu, Y., Li, W., & Zhang, H.(2010). Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1, and salt tolerance in transgenic soybean for over six generations. Chinese Science Bulletin, 55(12), 1127-1134.

    Li, Y., Zhang, J., Zhang, J., Hao, L., Hua, J., Duan, L., Zhang, M., & Li, Z.(2013). Expression of an A rabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions. Plant Biotechnology Journal, 11(6), 747-758.

    Li, Z., Liu, Z.-B., Xing, A., Moon, B.P., Koellhoffer, J.P., Huang, L., Ward, R.T., Clifton, E., Falco, S.C., & Cigan, A.M.  (2015). Cas9-guide RNA directed genome editing in soybean. Plant physiology, 169(2), 960-970.

    Liener, I.E. (1994). Implications of antinutritional components in soybean foods. Critical Reviews in Food Science & Nutrition, 34(1), 31-67.

    Lima, F. S., Correa, V. R., Nogueira, S. R., & Santos, P. R. (2017). Nematodes affecting soybean and sustainable practices for their management. Soybean–basis of yield, biomass and productivity, 95-110.

    Liu, S., Kandoth, P. K., Warren, S. D., Yeckel, G., Heinz, R., Alden, J., ... & Meksem, K. (2012). A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature492(7428), 256-260.

    Liu, X., Wu, S., Xu, J., Sui, C., & Wei, J. (2017). Application of CRISPR/Cas9 in plant biology. Acta pharmaceutica sinica B7(3), 292-302.

    Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., ... & Liu, Y. G. (2015). A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular plant8(8), 1274-1284.

    McCue, P., & Shetty, K. (2004). Health benefits of soy isoflavonoids and strategies for enhancement: a review. Critical reviews in food science and nutrition44(5), 361-367.

    Medic, J., Atkinson, C., & Hurburgh, C. R. (2014). Current knowledge in soybean composition. Journal of the American oil chemists' society91(3), 363-384.

    Michno, J. M., Wang, X., Liu, J., Curtin, S. J., Kono, T. J., & Stupar, R. M. (2015). CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM crops & food6(4), 243-252.

    Miller, J. C., Tan, S., Qiao, G., Barlow, K. A., Wang, J., Xia, D. F., ... & Rebar, E. J. (2011). A TALE nuclease architecture for efficient genome editing. Nature biotechnology29(2), 143-148.

    Miller, J. C., Zhang, L., Xia, D. F., Campo, J. J., Ankoudinova, I. V., Guschin, D. Y., ... & Rebar, E. J. (2015). Improved specificity of TALE-based genome editing using an expanded RVD repertoire. Nature methods12(5), 465-471.

    Moscou, M. J., & Bogdanove, A. J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science326(5959), 1501-1501.

    Mustroph, A. (2018). Improving flooding tolerance of crop plants. Agronomy8(9), 160.

    Mutava, R. N., Prince, S. J. K., Syed, N. H., Song, L., Valliyodan, B., Chen, W., & Nguyen, H. T. (2015). Understanding abiotic stress tolerance mechanisms in soybean: A comparative evaluation of soybean response to drought and flooding stress. Plant Physiology and Biochemistry86, 109-120.

    Osakabe, K., Osakabe, Y., & Toki, S. (2010). Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proceedings of the National Academy of Sciences107(26), 12034-12039.

    Pasley, H. R., Huber, I., Castellano, M. J., & Archontoulis, S. V. (2020). Modeling flood-induced stress in soybeans. Frontiers in Plant Science11, 62.

    Patil, G., Mian, R., Vuong, T., Pantalone, V., Song, Q., Chen, P., ... & Nguyen, H. T. (2017). Molecular mapping and genomics of soybean seed protein: a review and perspective for the future. Theoretical and Applied Genetics130(10), 1975-1991.

    Pavletich, N. P., & Pabo, C. (1991). Zinc Structure of a Recognition: Complex Zif268-DNA. Adv Sci252(5007), 809-17.

    Pham, A. T., Shannon, J. G., & Bilyeu, K. D. (2012). Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil. Theoretical and Applied Genetics125(3), 503-515.

    Phang, T. H., Shao, G., & Lam, H. M. (2008). Salt tolerance in soybean. Journal of Integrative Plant Biology50(10), 1196-1212.

    Pierce, E. C., LaFayette, P. R., Ortega, M. A., Joyce, B. L., Kopsell, D. A., & Parrott, W. A. (2015). Ketocarotenoid production in soybean seeds through metabolic engineering. PLoS One10(9), e0138196.

    Qingyun, L., Bingjun, Y., Youliang, L., Yuanming, Z., Yanling, X., & Yan, Z. (2004). The mixed inhertance analysis of salt tolerance in cultivars of glycine max. Soybean Science23(4), 239-244.

    Rahman, S. M., Takagi, Y., Kubota, K., Miyamoto, K., & Kawakita, T. (1994). High oleic acid mutant in soybean induced by X-ray irradiation. Bioscience, biotechnology, and biochemistry58(6), 1070-1072.

    Rahman, S. U., McCoy, E., Raza, G., Ali, Z., Mansoor, S., & Amin, I. (2022). Improvement of Soybean; A Way Forward Transition from Genetic Engineering to New Plant Breeding Technologies. Molecular Biotechnology, 1-19.

    Razzaq, A., Saleem, F., Kanwal, M., Mustafa, G., Yousaf, S., Imran Arshad, H. M., ... & Joyia, F. A. (2019). Modern trends in plant genome editing: an inclusive review of the CRISPR/Cas9 toolbox. International Journal of Molecular Sciences20(16), 4045.

    Ross, B. T., Zidack, N. K., & Flenniken, M. L. (2021). Extreme resistance to viruses in potato and soybean. Frontiers in Plant Science12, 658981.

    Sander, J. D., Dahlborg, E. J., Goodwin, M. J., Cade, L., Zhang, F., Cifuentes, D., ... & Joung, J. K. (2011). Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nature methods8(1), 67-69.

    Schmidt, M. A., Barbazuk, W. B., Sandford, M., May, G., Song, Z., Zhou, W., ... & Herman, E. M. (2011). Silencing of soybean seed storage proteins results in a rebalanced protein composition preserving seed protein content without major collateral changes in the metabolome and transcriptome. Plant Physiology156(1), 330-345.

    Schmidt, M. A., Parrott, W. A., Hildebrand, D. F., Berg, R. H., Cooksey, A., Pendarvis, K., ... & Herman, E. M. (2015). Transgenic soya bean seeds accumulating β‐carotene exhibit the collateral enhancements of oleate and protein content traits. Plant Biotechnology Journal13(4), 590-600.

    Shu, Y., Tao, Y., Wang, S., Huang, L., Yu, X., Wang, Z., ... & Ma, H. (2015). GmSBH1, a homeobox transcription factor gene, relates to growth and development and involves in response to high temperature and humidity stress in soybean. Plant cell reports34(11), 1927-1937.

    Siddique, S. (2022). Role of CRISPR/Cas9 in Soybean (Glycine max L.) Quality Improvement.

    Song, L., Valliyodan, B., Prince, S., Wan, J., & Nguyen, H. T. (2018). Characterization of the XTH gene family: new insight to the roles in soybean flooding tolerance. International Journal of Molecular Sciences19(9), 2705.

    Sprink, T., Metje, J., & Hartung, F. (2015). Plant genome editing by novel tools: TALEN and other sequence specific nucleases. Current opinion in biotechnology32, 47-53.

    Stahl, W., & Sies, H. (2003). Antioxidant activity of carotenoids. Molecular aspects of medicine24(6), 345-351.

    Staswick, P. E. (1990). Novel regulation of vegetative storage protein genes. The Plant Cell2(1), 1.

    Suhag, R., Dhiman, A., Deswal, G., Thakur, D., Sharanagat, V. S., Kumar, K., & Kumar, V. (2021). Microwave processing: A way to reduce the anti-nutritional factors (ANFs) in food grains. LWT150, 111960.

    Sun, X., Hu, Z., Chen, R., Jiang, Q., Song, G., Zhang, H., & Xi, Y. (2015). Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Scientific reports5(1), 1-10.

    Taie, H. A., El-Mergawi, R., & Radwan, S. (2008). Isoflavonoids, flavonoids, phenolic acids profiles and antioxidant activity of soybean seeds as affected by organic and bioorganic fertilization. Am Eurasian J Agric Environ Sci4(2), 207-213.

    Ullah, A., Li, M., Noor, J., Tariq, A., Liu, Y., & Shi, L. (2019). Effects of salinity on photosynthetic traits, ion homeostasis and nitrogen metabolism in wild and cultivated soybean. PeerJ7, e8191.

    Urnov, F. D., Miller, J. C., Lee, Y. L., Beausejour, C. M., Rock, J. M., Augustus, S., ... & Holmes, M. C. (2005). Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature435(7042), 646-651.

    Usovsky, M., Chen, P., Li, D., Wang, A., Shi, A., Zheng, C., ... & Dong, D. (2022). Decades of Genetic Research on Soybean mosaic virus Resistance in Soybean. Viruses14(6), 1122.

    Valliyodan, B., Ye, H., Song, L., Murphy, M., Shannon, J. G., & Nguyen, H. T. (2017). Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans. Journal of experimental botany68(8), 1835-1849.

    Wang, J., Kuang, H., Zhang, Z., Yang, Y., Yan, L., Zhang, M., ... & Guan, Y. (2020). Generation of seed lipoxygenase-free soybean using CRISPR-Cas9. The Crop Journal8(3), 432-439.

    Wang, L., Sun, S., Wu, T., Liu, L., Sun, X., Cai, Y., ... & Han, T. (2020). Natural variation and CRISPR/Cas9‐mediated mutation in GmPRR37 affect photoperiodic flowering and contribute to regional adaptation of soybean. Plant Biotechnology Journal18(9), 1869-1881.

    Wang, X., & Komatsu, S. (2020). Proteomic techniques for the development of flood-tolerant soybean. International journal of molecular sciences21(20), 7497.

    Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., & Qiu, J. L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature biotechnology32(9), 947-951.

    Wang, Y. U., Yuan, L. I., Su, T., Wang, Q., Gao, Y. A., Zhang, S., ... & Xie, Q. (2020). Light‐and temperature‐entrainable circadian clock in soybean development. Plant, Cell & Environment43(3), 637-648.

    Watanabe, D., Lošák, T., & Vollmann, J. (2018). From proteomics to ionomics: Soybean genetic improvement for better food safety. Genetika50(1), 333-350.

    Wei, W., Huang, J., Hao, Y. J., Zou, H. F., Wang, H. W., Zhao, J. Y., ... & Chen, S. Y. (2009). Soybean GmPHD-type transcription regulators improve stress tolerance in transgenic Arabidopsis plants. PLoS One4(9), e7209.

    Wei, W., Li, Q. T., Chu, Y. N., Reiter, R. J., Yu, X. M., Zhu, D. H., ... & Chen, S. Y. (2015). Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany66(3), 695-707.

    Widyasari, K., Alazem, M., & Kim, K. H. (2020). Soybean resistance to soybean mosaic virus. Plants9(2), 219.

    Wiedenheft, B., Sternberg, S. H., & Doudna, J. A. (2012). RNA-guided genetic silencing systems in bacteria and archaea. Nature482(7385), 331-338.

    Woo, J. W., Kim, J., Kwon, S. I., Corvalán, C., Cho, S. W., Kim, H., ... & Kim, J. S. (2015). DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature biotechnology33(11), 1162-1164.

    Wright, D. A., Li, T., Yang, B., & Spalding, M. H. (2014). TALEN-mediated genome editing: prospects and perspectives. Biochemical Journal462(1), 15-24.

    Wright, D. A., Thibodeau-Beganny, S., Sander, J. D., Winfrey, R. J., Hirsh, A. S., Eichtinger, M., ... & Joung, J. K. (2006). Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nature protocols1(3), 1637-1652.

    Wu, N., Lu, Q., Wang, P., Zhang, Q., Zhang, J., Qu, J., & Wang, N. (2020). Construction and analysis of GmFAD2-1A and GmFAD2-2A soybean fatty acid desaturase mutants based on CRISPR/Cas9 technology. International Journal of Molecular Sciences21(3), 1104.

    Wyman, C., & Kanaar, R. (2006). DNA double-strand break repair: all's well that ends well. Annu. Rev. Genet.40, 363-383.

    Yamada, T., Takagi, K., & Ishimoto, M. (2012). Recent advances in soybean transformation and their application to molecular breeding and genomic analysis. Breeding Science61(5), 480-494.

    Yang, C., Huang, Y., Lv, W., Zhang, Y., Bhat, J. A., Kong, J., ... & Zhao, T. (2020). GmNAC8 acts as a positive regulator in soybean drought stress. Plant Science293, 110442.

    Zhang, P., Du, H., Wang, J., Pu, Y., Yang, C., Yan, R., ... & Yu, D. (2020). Multiplex CRISPR/Cas9‐mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant biotechnology journal18(6), 1384-1395.

    Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K., ... & Gao, C. (2016). Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature communications7(1), 1-8.

    Zhang, Y., Zhang, F., Li, X., Baller, J. A., Qi, Y., Starker, C. G., ... & Voytas, D. F. (2013). Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant physiology161(1), 20-27.

    Zheng, C., Chen, P., Hymowitz, T., Wickizer, S., & Gergerich, R. (2005). Evaluation of Glycine species for resistance to Bean pod mottle virus. Crop Protection24(1), 49-56.

    Zheng, N., Li, T., Dittman, J. D., Su, J., Li, R., Gassmann, W., ... & Yang, B. (2020). CRISPR/Cas9-based gene editing using egg cell-specific promoters in Arabidopsis and soybean. Frontiers in plant science11, 800.

    Zhu, C., Naqvi, S., Gomez-Galera, S., Pelacho, A. M., Capell, T., & Christou, P. (2007). Transgenic strategies for the nutritional enhancement of plants. Trends in plant science12(12), 548-555.