Journal of Innovative Agriculture, Volume 12, Issue 4 : 10-35. Doi : 10.37446/jinagri/ra/12.4.2025.10-35
Review Article

OPEN ACCESS | Published on : 31-Dec-2025

Utilization of pineapple wastes for production of microbial pigments: extraction technologies, industrial applications, techno-economic and lifecycle assessment

  • Prakash Kumar Sarangi
  • AICRP on PHET, College of Agriculture, Central Agricultural University, Imphal – 795 004, Manipur, India.
  • Thangjam Anand Singh
  • AICRP on PHET, College of Agriculture, Central Agricultural University, Imphal – 795 004, Manipur, India.
  • Ng. Joykumar Singh
  • AICRP on PHET, College of Agriculture, Central Agricultural University, Imphal – 795 004, Manipur, India.
  • Priti Pal
  • Department of Biotechnology, Amity University, Lucknow, India.
  • Akhilesh Kumar Singh
  • Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar – 845 401, India.
  • G K Dinesh
  • Department of Biochemistry, Physiology, Microbiology and Environmental Science, College of Agriculture, Central Agricultural University, Imphal – 795 004, Manipur, India.
  • Sanjukta Subudhi
  • Microbial Biofuels & Bio-chemicals Area, TERI Center of Excellence on Biochemicals, Advanced Biofuels Division, The Energy and Resources Institute (TERI), New Delhi, India.
  • Vinod V. T. Padil
  • School of NanoScience, Central University of Gujarat, India.
  • Uttam Kumar Sahoo
  • Department of Forestry, Mizoram University, Aizawl – 796 004, India.

Abstract

The escalating demand for natural pigments, driven by their eco-friendly and bioactive properties, has spotlighted microbial production as a sustainable alternative to synthetic dyes. Pineapple wastes (PAWs), comprising 45–55% of the fruit’s weight, are rich in fermentable sugars and bioactive compounds, making them ideal substrates for microbial pigment synthesis. This review comprehensively explores the production of pigments like carotenoids, anthocyanins, and prodigiosins using PAWs, leveraging bacteria, fungi, yeasts, and microalgae. Advanced extraction technologies, including supercritical CO2, ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), ionic liquids (ILs), and enzyme-assisted extraction, are critically evaluated for their efficiency and sustainability. Industrial applications span food, cosmetics, textiles, and pharmaceuticals, with techno-economic assessments (TEA) and life cycle assessments (LCA) highlighting scalability and environmental benefits. Recent data from 2024–2025 underscore PAW’s up to a projected 60% cost reduction under optimal scale-up conditions and greenhouse gas emissions by 50% compared to synthetic methods. Challenges such as high equipment costs, regulatory hurdles, and process optimization are addressed, emphasizing the role of PAW valorization in advancing a circular bioeconomy.This review highlights the potential of pineapple waste-derived pigments to drive a circular bioeconomy while identifying research gaps for industrial implementation.

Keywords

pineapple waste, microbial pigments, extraction technologies, industrial applications, techno-economic assessment, lifecycle assessment

References

  • Abdul Halim, F. (2024). Control of citrinin and pigments produced by Monascus purpureus during the fermentation of red fermented rice: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University, Manawatu Campus, New Zealand.

    Adams, J. D. (2023). Microbial engineering and process modeling toward the development of electromicrobial production systems [Doctoral dissertation, University of California, Berkeley].

    Afraz, M. T., Xu, X., Adil, M., Manzoor, M. F., Zeng, X. A., Han, Z., & Aadil, R. M. (2023). Subcritical and supercritical fluids to valorize industrial fruit and vegetable waste. Foods, 12(12), 2417.

    Agarwal, H., Bajpai, S., Mishra, A., Kohli, I., Varma, A., Fouillaud, M., ... & Joshi, N. C. (2023). Bacterial pigments and their multifaceted roles in contemporary biotechnology and pharmacological applications. Microorganisms, 11(3), 614.

    Ahmad, W. A., Venil, C. K., & Aruldass, C. A. (2015). Production of violacein by Chromobacterium violaceum grown in liquid pineapple waste: current scenario. In Beneficial microorganisms in agriculture, aquaculture and other areas (pp. 45–58). Cham: Springer International Publishing.

    Ahmed, T., Rahman, N., Tasfia, R., Farhana, J., Hasan, T., & Sarwar, N. (2022). Effects of Non-Thermal Processing Methods on Physicochemical, Bioactive, and Microbiological Properties of Fresh Pineapple (Ananas comosus L. Merr.) Juice. Journal of Food Quality and Hazards Control, 9(3), 120–129.

    Aili Hamzah, A. F., Hamzah, M. H., Che Man, H., Jamali, N. S., Siajam, S. I., & Ismail, M. H. (2021). Recent updates on the conversion of pineapple waste (Ananas comosus) to value-added products, future perspectives and challenges. Agronomy, 11(11), 2221.

    Alawad, I., & Ibrahim, H. (2024). Pretreatment of agricultural lignocellulosic biomass for fermentable sugar: opportunities, challenges, and future trends. Biomass Conversion and Biorefinery, 14(5), 6155–6183.

    Albuquerque, B. R., Pinela, J., Pereira, C., Mandim, F., Heleno, S., Oliveira, M. B. P., & Barros, L. (2024). Recovery of anthocyanins from Eugenia spp. fruit peels: a comparison between heat-and ultrasound-assisted extraction. Sustainable Food Technology, 2(1), 189–201.

    Ali, A., Mendez, T., Anees, K., & Prasath, D. (2024). Advances in curcuminoids extraction, stability, and bioaccessibility from foods: A brief review. Journal of Food Measurement and Characterization, 18(6), 4832–4844.

    Anshi, Kapil, S., Goswami, L., & Sharma, V. (2024). Unveiling the intricacies of microbial pigments as sustainable alternatives to synthetic colorants: Recent trends and advancements. Micro, 4(4), 621‑640.

    Aruldass, C. A., Aziz, A., Venil, C. K., Khasim, A. R., & Ahmad, W. A. (2016). Utilization of agro-industrial waste for the production of yellowish orange pigment from Chryseobacteirum artocarpi CECT 8497. International Biodeterioration & Biodegradation, 113, 342–349. https://doi.org/10.1016/j.ibiod.2016.01.024

    Arumugam, S., Chengareddy, P., & Venkatakoteswararao, G. (2025). A review on the utilization of waste pineapple crown into value-added products. Biomass Conversion and Biorefinery, 15(1), 1–18.

    Awasthi, M. K., Azelee, N. I. W., Ramli, A. N. M., Rashid, S. A., Manas, N. H. A., Dailin, D. J., ... & Ravindran, B. (2022). Microbial biotechnology approaches for conversion of pineapple waste in to emerging source of healthy food for sustainable environment. International Journal of Food Microbiology, 373, 109714.

    Bakhshizadeh, M., Moghaddam, T. N., Tavassoli, M., Mousavi Khaneghah, A., & Ansarifar, E. (2025). Characterization, Extraction, and Encapsulation Technologies of Lycopene and Applications in Functional Food Products: An Updated Review. Food and Bioprocess Technology, 18(4), 3059-3099.

    Balla, C. B., Cabana, A. J. B., de la Cruz, N. D. C., Paet, J. M. Q., Regalia, R. S., Malonzo, C. A., & Peregrino, J. D. (2025). Draft Genome Sequence and Crude Violacein Production of Biowaste-grown Chromobacterium violaceum Strain RS2B1 Isolated from Nag-aso Boiling Lake, Albay, the Philippines. Philippine Journal of Science, 154(2), 347–357.

    Banerjee, S., Munagala, M., Shastri, Y., Vijayaraghavan, R., Patti, A. F., & Arora, A. (2022). Process design and techno-economic feasibility analysis of an integrated pineapple processing waste biorefinery. ACS Engineering Au, 2(3), 208–218.

    Bansod, S. P., Parikh, J. K., & Sarangi, P. K. (2023). Pineapple peel waste valorization for extraction of bio-active compounds and protein: Microwave assisted method and Box Behnken design optimization. Environmental Research, 221, 115237.

    Barreto, J. V. D. O., Casanova, L. M., Junior, A. N., Reis-Mansur, M. C. P. P., & Vermelho, A. B. (2023). Microbial pigments: major groups and industrial applications. Microorganisms, 11(12), 2920.

    Bas, T. G. (2024). Bioactivity and bioavailability of carotenoids applied in human health: Technological advances and innovation. International Journal of Molecular Sciences, 25(14), 7603.

    Bera, S., Mitra, R., & Singh, J. (2024). Recent advancement in protected delivery methods for carotenoid: A smart choice in modern nutraceutical formulation concept. Biotechnology and Genetic Engineering Reviews, 40(4), 4532–4588.

    Bhoi, R., Patro, A., & Sarkar, A. (2024). Sustainable Transformation of Agricultural Waste into Value-Added End Products Through Thermochemical Approach and End Product Characteristics. In Agricultural waste to value-added products: Bioproducts and its applications (pp. 1–25). Springer Nature Singapore.

    Bitencourt, B. S., Corrêa, J. L. G., Carvalho, G. R., & Augusto, P. E. D. (2022). Valorization of pineapple pomace for food or feed: Effects of pre-treatment with ethanol on convective drying and quality properties. Waste and Biomass Valorization, 13(4), 2253–2266.

    Bojarajan, A. K., Al Omari, S. A. B., Al-Marzouqi, A. H., Alshamsi, D., Sherif, M., Kabeer, S., & Sangaraju, S. (2024). A holistic overview of sustainable energy technologies and thermal management in UAE: the path to net zero emissions. International Journal of Thermofluids, 23, 100758.

    Brar, S. K., Dhillon, G. S., & Soccol, C. R. (Eds.). (2013). Biotransformation of waste biomass into high value biochemicals. Springer Science & Business Media.

    Casas-Rodríguez, A. D., Ascacio-Valdés, J. A., Dávila-Medina, M. D., Londoño-Hernández, L., & Sepúlveda-Torre, L. (2024). Use of pineapple (Ananas comosus L.) waste and its application in different biotechnological sectors. In Waste biorefineries (pp. 205–228). Apple Academic Press.

    Casas-Rodríguez, A. D., Ascacio-Valdés, J. A., Dávila-Medina, M. D., Medina-Morales, M. A., Londoño-Hernández, L., & Sepúlveda, L. (2024). Evaluation of solid-state fermentation conditions from pineapple peel waste for release of bioactive compounds by Aspergillus niger spp. Applied Microbiology, 4(2), 934–947.

    Choonut, A., Saejong, M., & Sangkharak, K. (2013). The production of ethanol and hydrogen from pineapple peel by Saccharomyces cerevisiae and Enterobacter aerogenes. Energy Procedia, 52, 242–249. https://doi.org/10.1016/j.egypro.2014.07.075

    Colletti, A. (2023). New strategies and technologies for the extraction and formulation of nutraceuticals and cosmeceuticals.

    Costa, J. M., & Forster-Carneiro, T. (2023). Valorization of apple pomace by-products from the juice processing industry using pressurized liquid technology. Journal of Environmental Chemical Engineering, 11(5), 110907.

    Da Luz Castro, J., Rojas Sossa, J. P., & Bustamante Román, M. (2024). Techno-economic analysis of biogas production from pineapple leaves juice and chicken manure in anaerobic codigestion. Ingeniería, 34(1), 23–32.

    Damazio, J. M., & dos Santos, M. A. (2024). The multiple services of hydropower plants in the context of sustainable electric sector in Brazil. Energy Exploration & Exploitation, 42(3), 1131–1144.

    Davis, D., Umesh, M., Santhosh, A. S., Suresh, S., Shanmugam, S., & Kikas, T. (2024). Extraction of Fungal Chitosan by Leveraging Pineapple Peel Substrate for Sustainable Biopolymer Production. Polymers, 16(17), 2455.

    de Oliveira, F., Dias, A. C., Sánchez-Muñoz, S., Balbino, T. R., Santos-Ebinuma, V. C., & da Silva, S. S. (2024). Sustainability feasibility of fungi-based biocolorants by biotechnological routes. Chemical Engineering Journal, 494, 152942.

    Dhar, P., Nickhil, C., Pandiselvam, R., & Deka, S. C. (2024). Pineapple waste-based-biorefinery for sustainable generation of value-added products. Biomass Conversion and Biorefinery, 14(20), 24927–24948.

    Di Salvo, E., Lo Vecchio, G., De Pasquale, R., De Maria, L., Tardugno, R., Vadalà, R., & Cicero, N. (2023). Natural pigments production and their application in food, health and other industries. Nutrients, 15(8), 1923.

    Dias, R. R., Lopes, E. J., Pinheiro, P. N., Maroneze, M. M., Fagundes, M. B., & Deprá, M. C. (2024). Avaliação de rotas tecnológicas da indústria de microalgas para obtenção de emissões líquidas zero.

    Dutta, D., Nayak, A., & Dutta, D. (2023). Reconnoitring the usage of agroindustrial waste in carotenoid production for food fortification: A sustainable approach to tackle vitamin A deficiency. Food and Bioprocess Technology, 16(3), 467–491.

    Dwivedi, S., Tanveer, A., Yadav, S., Anand, G., & Yadav, D. (2022). Agro‐wastes for cost effective production of industrially important microbial enzymes: an overview. Microbial biotechnology: role in ecological sustainability and research, 435-460.

    El-Sayed, E. S. R., Gach, J., Olejniczak, T., & Boratyński, F. (2022). A new endophyte Monascus ruber SRZ112 as an efficient production platform of natural pigments using agro-industrial wastes. Scientific Reports, 12(1), 12611.

    Francis, D., & Abdulhameed, S. (2024). Enzymes as a boon and a bane in the postharvest processing of fruits and vegetables. In Enzymatic processes for food valorization (pp. 37–59). Academic Press.

    Gadizza Perdani, C., Nurika, I., & Gunawan, S. (2024). Characterization of Bacterial Nanocellulose Produced by Tropical Fruit‐Derived Bacteria in Coconut Water Medium Supplemented with Pineapple Peel Extract. ChemistrySelect, 9(35), e202402954.

    Gaur, V., & Bera, S. (2023). Microbial canthaxanthin: an orange-red keto carotenoid with potential pharmaceutical applications. BioTechnologia, 104(3), 315–328.

    Ghosh, S., Sarkar, T., & Chakraborty, R. (2024). Application of Microbial Pigments in the Food Industry. In Microbial Pigments (pp. 66–83).

    Gohil, N., Bhattacharjee, G., Gayke, M., Narode, H., Alzahrani, K. J., & Singh, V. (2022). Enhanced production of violacein by Chromobacterium violaceum using agro‐industrial waste soybean meal. Journal of Applied Microbiology, 132(2), 1121–1133.

    Grewal, J., Wołacewicz, M., Pyter, W., Joshi, N., Drewniak, L., & Pranaw, K. (2022). Colorful treasure from agro-industrial wastes: A sustainable chassis for microbial pigment production. Frontiers in Microbiology, 13, 832918.

    Gupta, M. (2022). Pineapple waste utilization: Wealth from waste. Pharma Innovation Journal, 11(12), 1971–1978.

    Gurreri, L., Rindina, M. C., Luciano, A., Lima, S., Scargiali, F., Fino, D., & Mancini, G. (2023). Environmental sustainability of microalgae-based production systems: roadmap and challenges towards the industrial implementation. Sustainable Chemistry and Pharmacy, 35, 101191.

    Guryanov, I., & Naumenko, E. (2024). Bacterial Pigment Prodigiosin as Multifaceted Compound for Medical and Industrial Application. Applied Microbiology, 4(4), 1702–1728.

    Hikal, W. M., Mahmoud, A. A., Said-Al Ahl, H. A., Bratovcic, A., Tkachenko, K. G., Kačániová, M., & Rodriguez, R. M. (2021a). Pineapple (Ananas comosus L. Merr.), waste streams, characterisation and valorisation: An overview. Open Journal of Ecology, 11(9), 610–634.

    Hikal, W. M., Said-Al Ahl, H. A., Tkachenko, K. G., Bratovcic, A., Szczepanek, M., & Rodriguez, R. M. (2021b). Sustainable and environmentally friendly essential oils extracted from pineapple waste. Biointerface Research Applied Chemistry, 12(5), 6833–6844.

    Hladnik, L., Vicente, F. A., Košir, A., Grilc, M., & Likozar, B. (2023). Stirred, ultrasound-assisted and microwave-assisted extraction process of β-carotene from Rhodotorula glutinis in biorefinery downstream. Separation and Purification Technology, 311, 123293.

    Huang, Y. L., Chow, C. J., & Fang, Y. J. (2011). Preparation and physicochemical properties of fiber-rich fraction from pineapple peels as a potential ingredient. Journal of Food and Drug Analysis, 19(3), 4.

    Hussain, M. I., Raziq, A., Ahmed, A., Iqbal, M. W., Tian, R., Li, J., ... & Liu, Y. (2023). Recent progress in CRISPR-based bioengineering of microbial cell factories for important nutraceuticals synthesis. Journal of Applied Microbiology, 134(6), lxad114.

    Jaafar, N. L., Zulkifly, H., & Yusof, N. (2024). Development of Pineapple Peel Vinegar. Malaysia Journal of Invention and Innovation, 3(5), 23–27.

    Jiménez, A. N. (2024). Addressing waste management challenges in Costa Rica: An analysis of current practices, government initiatives, and future projections.

    Ju, M., Zhang, J., Mai, T., Li, L., Gu, T., Liu, Y., & Gao, M. (2023). Co-culture of Rhodotorula mucilaginosa and Monascus purpureus increased the yield of carotenoids and Monascus pigments. LWT, 183, 114949.

    Khedkar, M. A., Nimbalkar, P. R., Gaikwad, S. G., Chavan, P. V., & Bankar, S. B. (2017). Sustainable biobutanol production from pineapple waste by using Clostridium acetobutylicum B 527: Drying kinetics study. Bioresource Technology, 225, 359–366. https://doi.org/10.1016/j.biortech.2016.11.058

    Kiki, M. J. (2023). Biopigments of microbial origin and their application in the cosmetic industry. Cosmetics, 10(2), 47.

    Kuddus, M., Singh, P., Raveendran, S., & Singh, R. (Eds.). (2024). Microbial pigments: Applications in food and beverage industry. CRC Press.

    Kumalaningrum, A. N., Arini, Z. N., & Hidayat, J. P. (2025). Enhanced Recovery of Bioactive Compound from Pineapple Peel Using Ultrasonic-Assisted Extraction with Enzyme Treatment at Varying Extraction Time. Indonesian Journal of Chemical Research, 12(3), 238–245.

    Kumar, S., Dar, A. H., Srivastava, S., Dash, K. K., & Pandey, V. K. (2024). Carotenoids based Smart Packaging: A comprehensive review. Measurement: Food, 15, 100190.

    Kumar, S., Kumar, V., Nag, D., Kumar, V., Darnal, S., Thakur, V., ... & Singh, D. (2022). Microbial pigments: learning from the Himalayan perspective to industrial applications. Journal of Industrial Microbiology and Biotechnology, 49(5), kuac017.

    Kumaresan, P., Purayil, J. N., & Preethi, K. (2025). Valorization of pineapple (Ananas comosus) peel waste for levan production: Assessment of biological activities. International Journal of Biological Macromolecules, 296, 139482.

    Lee, C. C. (2025). Microbial Pigments: Fermentative Production and Biological Activities. In Bio-prospecting of novel microbial bioactive compounds for sustainable development: Management of natural resources through microbial conversion into valuable products (pp. 43–65). Springer Nature Switzerland.

    Lee, J., Bae, J., Youn, D. Y., Ahn, J., Hwang, W. T., Bae, H., ... & Kim, I. D. (2022). Violacein-embedded nanofiber filters with antiviral and antibacterial activities. Chemical Engineering Journal, 444, 136460.

    Leong, H. J. Y., Teoh, M. L., Beardall, J., & Convey, P. (2024). Green beauty unveiled: Exploring the potential of microalgae for skin whitening, photoprotection and anti-aging applications in cosmetics. Journal of Applied Phycology, 36(6), 3315-3328.

    Li, S., Chen, J., Hao, X., Ji, X., Zhu, Y., Chen, X., & Yao, Y. (2024). A systematic review of black soybean (Glycine max (L.) Merr.): Nutritional composition, bioactive compounds, health benefits, and processing to application. Food Frontiers, 5(3), 1188–1211.

    Li, S., Li, Y., Jiang, N., & Xu, W. (2025). Development of key ecological conservation and restoration projects in the past century. Ecological Frontiers45(1), 1-6.

    Li, Z., Li, C., Cheng, P., & Yu, G. (2022). Rhodotorula mucilaginosa-alternative sources of natural carotenoids, lipids, and enzymes for industrial use. Heliyon, 8(11), e11679.

    Liao, C. Y., Guan, Y. J., & Bustamante-Román, M. (2022). Techno-economic analysis and life cycle assessment of pineapple leaves utilization in Costa Rica. Energies, 15(16), 5784.

    Lins, A. B., Bione, A. P., Lins, U. M. L., de Souza Mendonça, R., & Campos-Takaki, G. M. (2022). Biotechnological potential of Talaromyces sp. isolated from soil of Caatinga biome in the production of pigments with antimicrobial activity. Research, Society and Development, 11(11), e240111133045–e240111133045.

    Majhi, S., Dhale, M. A., & Honganoor Puttananjaiah, M. (2023). Inhibitory effect of Monascus purpureus pigment extracts against fungi and mechanism of action. Frontiers in Sustainable Food Systems, 7, 1100961.

    Mala, T., Sadiq, M. B., & Anal, A. K. (2021). Comparative extraction of bromelain and bioactive peptides from pineapple byproducts by ultrasonic‐and microwave‐assisted extractions. Journal of Food Process Engineering, 44(6), e13709.

    Meena, L., Sengar, A. S., Neog, R., & Sunil, C. K. (2022). Pineapple processing waste (PPW): bioactive compounds, their extraction, and utilisation: a review. Journal of Food Science and Technology, 59(11), 4152-4164.

    Meng, Y., Jiang, H., Ji, H., Li, X., Julian, M. D., Sang, S., ... & Qiu, C. (2024). Co-encapsulation of curcumin and piperine in whey protein isolate fibrils improves their water dispersibility and antioxidant activity. Food Bioscience, 58, 103750.

    Mgeni, S. T., Mtashobya, L. A., & Emmanuel, J. K. (2024). Bioethanol production from pineapple fruit waste juice using bakery yeast. Heliyon, 10(19), e38172. https://doi.org/10.1016/j.heliyon.2024.e38172

    Molelekoa, T. B. J., Regnier, T., da Silva, L. S., & Augustyn, W. (2021). Production of pigments by filamentous fungi cultured on agro-industrial by-products using submerged and solid-state fermentation methods. Fermentation, 7(4), 295.

    Mota, I. G. C., Neves, R. A. M. D., Nascimento, S. S. D. C., Maciel, B. L. L., Morais, A. H. D. A., & Passos, T. S. (2023). Artificial dyes: Health risks and the need for revision of international regulations. Food Reviews International, 39(3), 1578–1593.

    Moura, F. T. D., Silva, S. D. M., Sousa, F. D. A. R. D. M., Santos, K. M., Bastos, T. M. D. R., & Araújo, J. (2024). Application of pulsed electric field in reducing internal browning and maintaining the functional potential of ‘Pérola’pineapple. Revista Ciência Agronômica, 55, e20217851.

    Mummaleti, G., Udo, T., Mohan, A., & Kong, F. (2025). Synthesis, characterization and application of microbial pigments in foods as natural colors. Critical reviews in food science and nutrition, 65(28), 5602-5631.

    Mussagy, C. U. (2021). Production of carotenoids by yeast Rhodotorula glutinis CCT-2186 and their extraction using alternative solvents.

    Nath, P. C., Ojha, A., Debnath, S., Neetu, K., Bardhan, S., Mitra, P., ... & Nayak, P. K. (2023). Recent advances in valorization of pineapple (Ananas comosus) processing waste and by-products: A step towards circular bioeconomy. Trends in Food Science & Technology, 136, 100-111.

    Nazir, M., Iram, A., Cekmecelioglu, D., & Demirci, A. (2024). Approaches for producing fungal cellulases through submerged fermentation. Frontiers in Bioscience-Elite, 16(1), 5.

    Nonglait, D. L., & Gokhale, J. S. (2024). Review insights on the demand for natural pigments and their recovery by emerging microwave-assisted extraction (MAE). Food and Bioprocess Technology, 17(7), 1681–1705.

    Nordin, N. L., Sulaiman, R., Noranizan, M. A., & Bakar, J. (2023). Recovery of insoluble-bound phenolics and bioactive volatile compounds from MD2 pineapple peel by enzyme-assisted extraction and kinetic model. Biomass Conversion and Biorefinery13(16), 15119-15134.

    Omar, S., Mohd Shafie, S., Hami, N., Othman, Z., & Djaohari, A. (2023). Environmental analysis of power generation from pineapple waste. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences105(2), 88-98.

    Pagliano, G., Galletti, P., Samorì, C., Zaghini, A., & Torri, C. (2021). Recovery of polyhydroxyalkanoates from single and mixed microbial cultures: a review. Frontiers in Bioengineering and Biotechnology9, 624021.

    Pandit, P., Singha, K., Maity, S., Maiti, S., & Kane, P. (2021). Treatment of textile wastewater by agricultural waste biomasses. In Sustainable Technologies for Textile Wastewater Treatments (pp. 137-156). Woodhead Publishing.

    Paz-Arteaga, S. L., Cadena-Chamorro, E., Goméz-García, R., Serna-Cock, L., Aguilar, C. N., & Torres-León, C. (2024). Unraveling the valorization potential of pineapple waste to obtain value-added products towards a sustainable circular bioeconomy. Sustainability16(16), 7236.

    Paz-Arteaga, S. L., Cadena-Chamorro, E., Serna-Cock, L., Torres-Castañeda, H., Pabón-Rodríguez, O. V., Agudelo-Morales, C. E., ... & Torres-León, C. (2023). Dual emerging applications of solid-state fermentation (SSF) with Aspergillus niger and ultrasonic-assisted extraction (UAE) for the obtention of antimicrobial polyphenols from pineapple waste. Fermentation9(8), 706.

    Pedro, A. C., Maciel, G. M., Lima, N. P., Lima, N. F., Ribeiro, I. S., Pinheiro, D. F., & Haminiuk, C. W. I. (2024). Valorization of bioactive compounds from juice industry waste: Applications, challenges, and future prospects. Trends in Food Science & Technology152, 104693.

    Periyasamy, A. P. (2024). Recent advances in the remediation of textile-dye-containing wastewater: prioritizing human health and sustainable wastewater treatment. Sustainability16(2), 495.

    Pise, V. H. (2024). Techno-economic evaluation for cost-effective drying of different fruit products. In Dried Fruit Products (pp. 206-233). CRC Press.

    Polania, A. M., Londoño, L., Ramírez, C., Bolivar, G., & Aguilar, C. N. (2023). Valorization of pineapple waste as novel source of nutraceuticals and biofunctional compounds. Biomass Conversion and Biorefinery13(5), 3593-3618.

    Quiroz-Arita, C., Shinde, S., Kim, S., Monroe, E., George, A., Quinn, J., ... & Davis, R. W. (2022). Bioproducts from high-protein algal biomass: an economic and environmental sustainability review and risk analysis. Sustainable Energy & Fuels6(10), 2398-2422.

    Rabinovich, V. A., Linnenberg, C., Theilen, U., & Weigand, H. (2024). Biogas Production Potential of Mixed Banana and Pineapple Waste as Assessed by Long-Term Laboratory-Scale Anaerobic Digestion. Fermentation, 10(5), 261.

    Rafaqat, S., Ali, N., Torres, C., & Rittmann, B. (2022). Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology. RSC advances12(27), 17104-17137.

    Rajendran, P., Somasundaram, P., & Dufosse, L. (2023). Microbial pigments: eco-friendly extraction techniques and some industrial applications. Journal of Molecular Structure1290, 135958.

    Ramesh, C., Prasastha, V. R., Venkatachalam, M., & Dufossé, L. (2022). Natural substrates and culture conditions to produce pigments from potential microbes in submerged fermentation. Fermentation, 8(9), 460. https://doi.org/10.3390/fermentation8090460

    Ramesh, P. V., Sangeetha Gowda, K. R., & More, S. S. (2025). Introduction to Chemistry of Microbial Colorants: Structures, Properties, and Biosynthesis. Microbial Colorants: Chemistry, Biosynthesis and Applications, 129-175.

    Râpă, M., Darie-Niță, R. N., & Coman, G. (2024). Valorization of fruit and vegetable waste into sustainable and value-added materials. In waste (Vol. 2, No. 3, pp. 258-278). MDPI.

    Rivera, A. M. P., Toro, C. R., Londoño, L., Bolivar, G., Ascacio, J. A., & Aguilar, C. N. (2023). Bioprocessing of pineapple waste biomass for sustainable production of bioactive compounds with high antioxidant activity. Journal of Food Measurement and Characterization17(1), 586-606.

    Roda, A., De Faveri, D. M., Giacosa, S., Dordoni, R., & Lambri, M. (2016). Effect of pre-treatments on the saccharification of pineapple waste as a potential source for vinegar production. Journal of Cleaner Production112, 4477-4484. https://doi.org/10.1016/j.jclepro.2015.07.019

    Roy, T., Basak, N., Mainak, S., & Islam, E. (2025). Amino Acid–Derived Pigments: Microbial Mastery in Coloration. Microbial Colorants: Chemistry, Biosynthesis and Applications, 287-303.

    Sanahuja, A. B., García, A. V., Baenas, N., Ferrando, B. O., Periago, M. J., Alonso, N. C., ... & Todolí, J. L. (2025). Valorization of Pineapple Core Waste for Sequential Extraction of Phenolic Compounds and Carotenoids: Optimization Through Ultrasound-Assisted Method and Box–Behnken Design. Food and Bioprocess Technology18(3), 2618-2631.

    Sanches, A. G., Ferreira Feitosa, E. M., & Schwob, A. C. (2024). Metabolic response of vitamin C and phenolic compounds in fresh‐cut pineapple induced by pulsed electric fields. Future Postharvest and Food1(4), 454-465.

    Sani, I. K., Mehrnoosh, F., Rasul, N. H., Hassani, B., Mohammadi, H., Gholizadeh, H., ... & Jafari, S. M. (2024). Pulsed electric field-assisted extraction of natural colorants; principles and applications. Food Bioscience61, 104746.

    Sarangi, P. K., Singh, A. K., Srivastava, R. K., & Gupta, V. K. (2023). Recent progress and future perspectives for zero agriculture waste technologies: Pineapple waste as a case study. Sustainability15(4), 3575.

    Sarangi, P. K., Singh, T. A., Singh, N. J., Shadangi, K. P., Srivastava, R. K., Singh, A. K., ... & Vivekanand, V. (2022). Sustainable utilization of pineapple wastes for production of bioenergy, biochemicals and value-added products: A review. Bioresource technology351, 127085.

    Schoss, K., & Glavač, N. K. (2024). Supercritical CO2 extraction vs. hexane extraction and cold pressing: comparative analysis of seed oils from six plant species. Plants13(23), 3409.

    Selani, M. M., Brazaca, S. G. C., Dos Santos Dias, C. T., Ratnayake, W. S., Flores, R. A., & Bianchini, A. (2014). Characterisation and potential application of pineapple pomace in an extruded product for fibre enhancement. Food chemistry163, 23-30. https://doi.org/10.1016/j.foodchem.2014.04.076

    Selvanathan, Y., & Masngut, N. (2023). Optimization of process factor and characterization of vinegar-like beverage production via spontaneous fermentation from pineapple peel waste. LWT182, 114818.

    Sengar, A. S., Sunil, C. K., Rawson, A., & Venkatachalapathy, N. (2022). Identification of volatile compounds, physicochemical and techno-functional properties of pineapple processing waste (PPW). Journal of Food Measurement and Characterization16(2), 1146-1158.

    Sharma, N., Shekhar, P., Kumar, V., Kaur, H., & Jayasena, V. (2024). Microbial pigments: Sources, current status, future challenges in cosmetics and therapeutic applications. Journal of Basic Microbiology64(1), 4-21.

    Sharma, P., Bano, A., Singh, S. P., Varjani, S., & Tong, Y. W. (2024). Sustainable organic waste management and future directions for environmental protection and techno-economic perspectives. Current Pollution Reports10(3), 459-477.

    Silva, P. G. P., Contessa, C. R., Silva, I. Q., Arrieira, N. M., Santos, L. O., Burkert, C. A. V., & de Medeiros Burkert, J. F. (2024). Biotechnological Tools for Enhancing Microbial Pigment Production. In Microbial Pigments (pp. 48-65). CRC Press.

    Singh, P., Kumar, U., Dwivedi, A., Singh, P. K., Kumar, I., Mishra, S., ... & Sharma, R. K. (2024). Green Solutions for Heavy Metal Remediation: Unveiling the Potential of Agricultural Waste through Techno-Economic Analysis and Life Cycle Assessment. In Heavy Metal Contamination in the Environment (pp. 238-262). CRC Press.

    Singh, T. A., Sarangi, P. K., & Singh, N. J. (2022). Pineapple Processing Waste Utilization for Sustainable Development in North-Eastern States of India. In Biotechnology for Waste Biomass Utilization (pp. 251-261). Apple Academic Press.

    Srilekha, V., Krishna, G., Sreelatha, B., Jagadeesh Kumar, E., & Rajeshwari, K. V. N. (2024). Prodigiosin: A fascinating and the most versatile bioactive pigment with diverse applications. Systems Microbiology and Biomanufacturing4(1), 66-76.

    Suzuki, K., Arnold, J. M., Chateau, J., Sripumphet, S., & Poolee, W. (2024). A growth-friendly and inclusive green transition strategy for Thailand. Documents de travail du Département des Affaires économiques de l'OCDE.

    Tan, X., Wen, L., Li, Y., Zhang, Q., Tang, S., Sheng, Y., & Lai, C. (2025). Distinct effects of dilute acid prehydrolysate inhibitors on enzymatic hydrolysis and yeast fermentation. Bioprocess and Biosystems Engineering48(1), 133-145.

    Tan, Y. H., Khoo, Y. J., Chai, M. K., & Wong, L. S. (2021). Tropical fruit wastes as an organic nutrient sources for the cultivation of Chlorella vulgaris and Haematococcus pluvialisNature Environment and Pollution Technology20(2), 613-618.

    Tarangini, K., & Mishra, S. (2014). Carotenoid production by Rhodotorula sp. on fruit waste extract as a sole carbon source and optimization of key parameters. Iranian Journal of Chemistry and Chemical Engineering (IJCCE)33(3), 89-99.

    Thakur, M., & Modi, V. K. (2024). Biocolorants in food: sources, extraction, applications and future prospects. Critical Reviews in Food Science and Nutrition64(14), 4674-4713.

    Tropea, A., Giuffrida, D., Mussagy, C. U., Dufossé, L., & Mondello, L. (2025). Microbial Pigments Production from Agro-Industrial Waste. In Bio-prospecting of Novel Microbial Bioactive Compounds for Sustainable Development: Management of Natural Resources Through Microbial Conversion into Valuable Products (pp. 83-97). Cham: Springer Nature Switzerland.

    Tupuna-Yerovi, D. S., Schmidt, H., & Rios, A. D. O. (2025). Biodegradable sodium alginate films incorporated with lycopene and β-carotene for food packaging purposes. Food Science and Technology International31(1), 23-35.

    Umesh, M., Suresh, S., Santosh, A. S., Prasad, S., Chinnathambi, A., Al Obaid, S., ... & Shanmugam, S. (2023). Valorization of pineapple peel waste for fungal pigment production using Talaromyces albobiverticillius: Insights into antibacterial, antioxidant and textile dyeing properties. Environmental Research229, 115973.

    Unsain, J., & Seoane, I. (2024). Correlation analysis between the monetary policy and the valuation of infrastructure investments (Master's thesis, Universitat Politècnica de Catalunya).

    Usman, M., Nakagawa, M., & Cheng, S. (2023). Emerging trends in green extraction techniques for bioactive natural products. Processes11(12), 3444.

    Usmani, Z., Sharma, M., Sudheer, S., Gupta, V. K., & Bhat, R. (2020). Engineered microbes for pigment production using waste biomass. Current Genomics21(2), 80-95. https://doi.org/10.2174/1389202921999200330152007

    Verma, H., Sharma, A. K., Rani, A., Thiyam, G., & Pavan, M. (2023). Optimization of the process parameters for dyeing silk fabric with a fungal pigment using RSM. Sustainable Chemistry and Pharmacy35, 101192.

    Vishnupriya, S., Bhavaniramya, S., Baskaran, D., & Karthiayani, A. (2021). Microbial pigments and their application. In Microbial Polymers: Applications and Ecological Perspectives (pp. 193-214). Singapore: Springer Singapore.

    Wan Azlina, A., & Nur Zulaikha, Y. (2010).. Production of Pigments from Bacteria Grown in Solid and Liquid Pineapple Waste. In VII International Pineapple Symposium 902 (pp. 415-422). https://doi.org/10.17660/ActaHortic.2011.902.50

    Wang, C. A., Onyeaka, H., Miri, T., & Soltani, F. (2024). Chlorella vulgaris as a food substitute: Applications and benefits in the food industry. Journal of food science89(12), 8231-8247.

    Wang, X., Cui, Z., Zhang, Z., Zhao, J., Liu, X., Meng, G., … & Zhang, J. (2024b). Two-step optimization for improving prodigiosin production using a fermentation medium for Serratia marcescens and an extraction process. Fermentation, 10(2), 85.

    Yadav, M., Singh, N., Annu, Khan, S. A., Raorane, C. J., & Shin, D. K. (2024a). Recent advances in utilizing lignocellulosic biomass materials as adsorbents for textile dye removal: a comprehensive review. Polymers16(17), 2417.

    Yadav, S., Malik, K., Moore, J. M., Kamboj, B. R., Malik, S., Malik, V. K., ... & Bishnoi, D. K. (2024b). Valorisation of agri-food waste for bioactive compounds: recent trends and future sustainable challenges. Molecules29(9), 2055.

    Zainuddin, N. A., Mohamad, N. D., & Rodzay, R. M. (2021). Rapid expansion supercritical solution (RESS) of CO2 as a green technology method for pineapple peels solid oil particle formation. In IOP Conference Series: Materials Science and Engineering (Vol. 1053, No. 1, p. 012086). IOP Publishing.

    Zaky, A. A., Witrowa‐Rajchert, D., & Nowacka, M. (2025). Revolution of bioactive compound extraction: Impacts on food safety, health, and sustainability. Food Safety and Health.

    Zannou, O., Oussou, K. F., Mohammed, S., Chabi, I. B., Kpoclou, Y. E., Tekgüler, B., ... & Esatbeyoglu, T. (2025). Application of emerging technologies for extraction of pigments using green solvents: case of deep eutectic solvents combined with ultrasound-assisted extraction technique. Biomass Conversion and Biorefinery15(6), 8253-8265.