This study investigates the phytochemical composition of aqueous and ethanolic extracts of Asphodelus tenuifolius, along with the antioxidant potential and characterization of its polysaccharide, including its antioxidant and insecticidal effects. Phytochemical analysis showed that the ethanolic extract had higher contents in polyphenol (251.53 ± 8.88 μg EAG/mg), flavonoid (166.66 ± 5.24 μg EQ/mg), and tannin (30.41 ± 7.5 μg EAT/mg) compared to the aqueous extract. Both extracts exhibited strong antioxidant activity against DPPH radical and reducing power. The polysaccharide yield reached 8.02%, contains sugars and minimal protein as confirmed by the Fourier Transform Infrared Spectroscopy analysis. It also exhibits considerable DPPH scavenging potential and reducing power. The polysaccharides’ fraction also showed significant insecticidal activity against Tribolium confusum, achieving the highest mortality rate at 8 µg/ml. These findings suggest that polyphenols and flavonoids contained in the extract of A. tenuifolius may be responsible for antioxidant activity. Furthermore, the strong antioxidant and insecticidal properties of the polysaccharide of Asphodelus tenuifolius highlight its potential for further in vivo studies on oxidative stress, supporting its promising biological applications.
Asphodelus tenuifolius, antioxidant activity, insecticidal activity, polysaccharide, phytochemistry, Tribolium confusum
Aćimović, M., Šovljanski, O., Pezo, L., Travičić, V., Tomić, A., Zheljazkov, V. D., Ćetković, G., Gajić, J. Š., Borjan, T.B & Sofrenić, I. (2022). Variability in biological activities of Satureja montana subsp. montana and subsp. variegata based on different extraction methods. Antibiotics, 11(9), 1235.
Alimi, H., Mbarki, S., Barka, Z. B., Feriani, A., Bouoni, Z., Hfaeidh, N., Sakly, M., Tebourbi, O., Rhouma, K. B. (2013). Phytochemical, antioxidant and protective effect of Rhus tripartitum root bark extract against ethanol-induced ulcer in rats. General Physiology and Biophysics, 32(1), 115-127.
Almoshari, Y. (2022). Medicinal plants used for dermatological disorders among the people of the kingdom of Saudi Arabia: A narrative review. Saudi Journal of Biological Sciences, 29(6), 103303.
Anbessa, B., Lulekal, E., Hymete, A., Debella, A., Debebe, E., Abebe, A., & Degu, S. (2024). Ethnomedicine, antibacterial activity, antioxidant potential and phytochemical screening of selected medicinal plants in Dibatie district, Metekel zone, western Ethiopia. Complementary Medicine and Therapies, 24(1), 199.
Arifuzzaman, M., Al Bachchu, M. A., Kulsum, M. O., & Ara, R. (2014). Toxicity and repellency effect of some indigenous plant extracts against lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae). Journal of Bio-Science, 22, 31-39.
Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200.
Boual, Z., Kemassi, A., Michaud, P., & Ould El Hadj, M. D. (2011). Caractérisation partielle des polysaccharides hydrosolubles des feuilles d'Asphodelus tenuifolius Cavan (Liliaceae): effet prébiotique des oligosaccharides issus de l'hydrolyse des polysaccharides. Algerian Journal of Arid Environment, 1(2), 52-60.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.
Dewanto, V., Wu, X., Adom, K. K., & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of agricultural and food chemistry, 50(10), 3010-3014.
DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356.
Govindarajan, S., & Noor, A. (2021). Biological activities of plant polysaccharides, mechanism of action and biomedical applications. Research Journal of Biotechnology, 16, 7.
Huang, R., & Yu, H. (2024). Extraction methods, chemical compositions, molecular structure, health functions, and potential applications of tea polysaccharides as a promising biomaterial: A review. International Journal of Biological Macromolecules, 134150.
Idoudi, S., Othman, K. B., Bouajila, J., Tourrette, A., Romdhane, M., & Elfalleh, W. (2023). Influence of extraction techniques and solvents on the antioxidant and biological potential of different parts of Scorzonera undulata. Life, 13(4), 904.
Kumar, S., Garg, C., Kaushik, S., Buttar, H. S., & Garg, M. (2021). Demystifying therapeutic potential of medicinal plants against chikungunya virus. Indian Journal of Pharmacology, 53(5), 403-411.
Mahboub, N. (2018). Effet de différents modes de séchage de quelques plantes sahariennes à caractère médicinales sur leur contenu phénolique et leurs activités biologiques (Doctoral dissertation, Universite Kasdi Merbah Ouargla).
McDonald, L. L., Guy, R. H., & Speirs, R. D. (1970). Preliminary evaluation of new candidate materials as toxicants, repellents, and attractants against stored-product insects (No. 882). Agricultural Research Service, United States Department of Agriculture.
Muscolo, A., Mariateresa, O., Giulio, T., & Mariateresa, R. (2024). Oxidative stress: the role of antioxidant phytochemicals in the prevention and treatment of diseases. International journal of molecular sciences, 25(6), 3264.
Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of natural products, 83(3), 770-803.
Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics, 44(6), 307-315.
Ozuna-Valencia, K. H., Rodríguez-Félix, F., Márquez-Ríos, E., Moreno-Vásquez, M. J., Graciano-Verdugo, A. Z., Robles-García, M. Á., Aubourg-Martínez, S. P., Quintero-Reyes, I. E.,, López-Corona, B. E., & Tapia-Hernández, J. A. (2024). Improving the Properties of Polysaccharide-Based Films by Incorporation of Polyphenols Through Free Radical Grafting: A Review. Polysaccharides, 5(4), 672-697.
Rayess, Y. E., Nehme, L., Ghanem, C., Beyrouthy, M. E., Sadaka, C., Azzi-Achkouty, S., Nehme, N., Gürer, E.S., & Sharifi-Rad, J. (2023). Phenolic content, antioxidant and antimicrobial activities evaluation and relationship of commercial spices in the lebanese market. BMC chemistry, 17(1), 157.
Salem, A. B., Boujraf, A., Dallahi, Y., & El Aboudi, A. (2023). Contribution to the evaluation of the biomass of medicinal and aromatic plants in Mo-rocco: Case of Globularia alypum. Biosystems Diversity, 31(4), 535-541.
Sharma, R., & Kaul, V. (2024). Estimation of anti-oxidant activity and quantification of specific phenols and flavonoids in Asphodelus tenuifolius Cavan. (Onion weed) using HPLC. Vegetos, 1-10.
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.
Sun, W., & Shahrajabian, M. H. (2023). Therapeutic potential of phenolic compounds in medicinal plants—Natural health products for human health. Molecules, 28(4), 1845.