Journal of Ethnopharmacology and Toxicology, Volume 2, Issue 1 : 1-9. Doi : 10.37446/jet/rsa/2.1.2024.1-9
Research Article

OPEN ACCESS | Published on : 30-Jun-2024

Impact of nickel toxicity on mitosis and chromosomal behaviour in germinating Pisum sativum L.

  • Jayshri D Chaudhari
  • Department of Botany, Sir P T Sarvajanik College of Science, Athwalines, Surat, 395001, India.

Abstract

Environmental contamination by heavy metals like nickel (Ni) adversely affects plant growth by interfering with essential cellular processes. The present study examines nickel's cytotoxic and genotoxic effects on Pisum sativum L., an important leguminous crop. Germinating seeds of Pisum sativum were treated with varying concentrations of nickel chloride (75 ppm, 100 ppm, and 125 ppm). Root tips were subjected to cytological analysis using standard squash techniques to assess the mitotic index and chromosomal behaviour. Nickel treatment significantly reduced the mitotic index and induced a range of chromosomal abnormalities, including stickiness, bridges, laggards, and disturbed metaphases and anaphases. These effects were more pronounced at higher concentrations. The study demonstrates that nickel toxicity disrupts normal mitotic processes and induces chromosomal aberrations in Pisum sativum, suggesting potential risks to crop development and genetic stability in nickel-contaminated soils.

Keywords

nickel chloride, chromosomal behavior, stickiness, bridges, laggards

References

  • Abbas, T., Khan, M. I. R., Ahmad, P., Alhumaid, S., & Hasanuzzaman, M. (2023). Gibberellic acid mitigates nickel stress in soybean by cell wall fixation and regulating oxidative stress metabolism and glyoxalase system. Environmental Research, 226, 115123. https://doi.org/10.1016/j.envres.2023.115123

    Bessonova, V. P. (1991). Cell analysis of Lathyrus odoratus L. root growth under the effect of heavy metals. Tsitologiya-i-Genetika, 25, 18–22.

    Bhowmik, N. (2000). Cytotoxic effects of lead compounds on plant systems (Doctoral dissertation, University of Calcutta).

    Boyadjiev, V., Alexieva, V., Zaprjanov, Z. K., Hadzhieva, Y. T., Koleva, M. I., Tzacheva, N. K., Boyadjieva, P. V., & Nikolova, P. O. (1990). Heavy metal poisonings (p. 242). Medicina i Fizkultura.

    Brown, P. H., Welch, R. M., & Cary, E. E (1987). Nickel: A micronutrient essential for higher plants. Plant Physiology, 85(3), 801-803. https://doi.org/10.1104/pp.85.3.801

    Chang, L., Meier, J., & Smith, M. (1997). Application of plant and earthworm bioassays to evaluate remediation of a lead-contaminated soil. Archives of Environmental Contamination and Toxicology, 32, 166–171. https://doi.org/10.1007/s002449900160

    Chaudhari, J. D. (2023). Anatomical changes in seedlings of Pisum sativum Linn. under nickel stress. Zenodohttps://doi.org/10.5281/zenodo.10049534

    Dineva, S. B., Abramov, V. I., & Shevchenko, V. A. (1993). Genetic effects of lead nitrate treatment of the seeds of chronically irradiated populations of Arabidopsis thalianaGenetika Moskva, 29, 1914–1920.

    Duan, C. Q., & Wan, H. X. (1995). Cytogenetic toxic effects of heavy metals on Vicia faba and studies into the Vicia micronucleus. Acta Botanica Sinica, 37, 14–24.

    Eliwa, A. M., & Hamid, A. (2011). The effect of nickel and lead ions on germination percentage and mitotic activity of two cultivars of Pisum sativum (cv. B-master and cv. Sugary). Journal Name, 1, 41–45.

    Gajewska, E., & Sklodowska, M. (2007). Effect of nickel on growth and some biochemical parameters of Pisum sativum L. plants. Acta Biologica Cracoviensia. Series Botanica, 49(2), 19–26. https://doi.org/10.1016/j.actab.2007.08.004

    Gill, S. S., & Tuteja, N. (2012). Chromosomal aberrations and their role in determining metal toxicity in plants. Ecotoxicology, 21(4), 907–917. https://doi.org/10.1007/s10646-012-0987-0

    Huillier, L. L., Auzac, J. D., Durand, M., & Michaud-Ferriere, N. (1996). Nickel effects on two maize (Zea mays) cultivars: Growth, structure, Ni concentration, and localization. Canadian Journal of Botany, 74, 1547–1554. https://doi.org/10.1139/b96-188

    Kaur, R., & Garg, N. (2022). Nickel-induced cytotoxicity and oxidative stress in plants: A review on tolerance mechanisms and mitigation strategies. Environmental and Experimental Botany, 196, 104822. https://doi.org/10.1016/j.envexpbot.2022.104822

    Liu, D., Xie, Y., Wang, J., & Li, S. (2009). Toxicological and ecological effects of nickel on Allium cepaEcotoxicology and Environmental Safety, 72(2), 513–520. https://doi.org/10.1016/j.ecoenv.2008.08.020

    Nyarai-Horvath, F., Szalai, T., Kadar, I., & Csatho, P. (1997). Germination characteristics of pea seeds originating from a field trial treated with different levels of harmful elements. Acta Agronomica Hungarica, 45, 147–154. https://doi.org/10.1556/AAgr.45.1997.2.9

    Patra, M., Bhowmik, N., Mandal, N., et al. (2004). Effect of nickel on the growth and biochemical parameters of Pisum sativum L. Indian Journal of Plant Physiology, 9(2), 114–124. https://doi.org/10.1007/BF03031433

    Piechalak, A., Tomaszewska, B., Baralkiewicz, D., & Malecka, A. (2002). Accumulation and detoxification of lead ions in legumes. Phytochemistry, 60(2), 153–162. https://doi.org/10.1016/S0031-9422(02)00079-8

     

    Rahman, M. A., Hossain, F., & Biswas, D. K. (2021). Genotoxic effects of nickel in Allium cepa and Vicia faba root meristem cells. Environmental Science and Pollution Research, 28(12), 14715–14727. https://doi.org/10.1007/s11356-020-12000-y

    Rank, J., & Nielsen, M. H. (1998). Genotoxicity testing of wastewater sludge using the Allium cepa anaphase–telophase chromosome aberration assay. Mutation Research, 418(2–3), 113–119. https://doi.org/10.1016/S1383-5718(98)00132-6

    Sahi, A. N., Singh, S. K., Sen, P. K., & Singh, R. N. (1998). Cytogenetic response of hexavalent chromium induced somatic cell abnormalities in Allium cepaCytobiologists, 96, 71–97.

    Savic, G., Bajraktari, I., Jablanovic, M., Hajrizi, A., & Brankovic, S. (1989). Effect of industrial pollution on genetic changes of Allium ascalonicum L. Acta Biologica et Medica Experimentalis, 14, 129–134.

    Sengupta, R. K., & Ghosh, P. (1993). Effect of thuja-200 on induced chromosomal aberration. Environment and Ecology, 11, 147–179.

    Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 35–52. https://doi.org/10.1590/S1677-04202005000100005

    Sharma, P., Verma, S., & Kumar, A. (2023). Nickel toxicity and plant responses: Cellular, molecular, and physiological insights. Chemosphere, 330, 138793. https://doi.org/10.1016/j.chemosphere.2023.138793

    Smýkal, P., Vernoud, V., Kren, V., et al. (2012). Genetic resources of Pisum sativum and their utilization in plant breeding. Plant Genetic Resources, 10(4), 209–222. https://doi.org/10.1017/S1479262112000020

    Strubinska, J., Pietrusiewicz, J., Sniezko, R., & Bednara, J. (2005). Lead induced disturbances in cell divisions and growth in sunflower primary and adventitious roots. Journal Name, 42(2), 192.

    Wang, H. Q. (1999). Clastogenicity of chromium contaminated soil samples evaluated by Vicia root micronucleus assay. Mutation Research – Fundamental and Molecular Mechanisms of Mutagenesis, 426, 147–149. https://doi.org/10.1016/S0027-5107(99)00049-2

    Wierzbicka, M. (1989). Disturbances in cytokinesis caused by inorganic lead. Environmental and Experimental Botany, 29, 123–133. https://doi.org/10.1016/0098-8472(89)90002-3

    Yirmibeş, F., Yalçın, E., & Çavuşoğlu, K. (2023). DNA fragmentation, chromosomal aberrations, and multi-toxic effects induced by nickel and the modulation of Ni-induced damage by pomegranate seed extract in Allium cepa L. Environmental Science and Pollution Researchhttps://doi.org/10.1007/s11356-023-10547-1

    Yu, H., Li, W., Liu, X., et al. (2024). Physiological and molecular bases of the nickel toxicity responses in tomato. Stress Biology, 4(1), 25. https://doi.org/10.1007/s44154-024-00162-0

    Yusuf, M., Fariduddin, Q., Ahamed, S., et al. (2011). Heavy metal toxicity in plants: Role of antioxidants and their interactions in environmental stress management. Plant Biology, 14(6), 675–685. https://doi.org/10.1055/s-0031-1283799