Diospyros mespiliformis, commonly known as African ebony, is a medicinal plant widely used in traditional African medicine. This study aimed to investigate the phytochemical constituents, isolate bioactive compounds, and evaluate the antioxidant activity of the methanol leaf extract of Diospyros mespiliformis. Preliminary phytochemical screening revealed the presence of alkaloids, carbohydrates, cardiac glycosides, flavonoids, saponins, and tannins. Column chromatography and thin-layer chromatography (TLC) were employed to isolate and characterize a compound, identified as a triterpenoid mixture consisting of α-amyrin and β-amyrin. The antioxidant activity of the crude extract and the isolated compound was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The isolated compound exhibited significant antioxidant activity, with an IC50 value of 8.5 µg/mL, compared to the crude extract (IC50 = 10.5 µg/mL) and ascorbic acid (IC50 = 4.25 µg/mL). These findings suggest that Diospyros mespiliformis is a rich source of bioactive compounds with potent antioxidant properties, supporting its traditional use in managing oxidative stress-related diseases.
Diospyros mespiliformis, phytochemicals, α-amyrin, β-amyrin, antioxidant activity, DPPH assay
Ahmed, A. H., & Mahmud, A. F. (2017). Pharmacological activities of Diospyros mespiliformis: A review. International Journal of Pharmacy and Biological Sciences, 7(4), 93–96.
Aminu, S. A., Ibrahim, Y., Ismail, H. A., & Ibrahim, I. O. (2021). Medicinal and traditional utilization of African ebony (Diospyros mespiliformis): A review. International Journal of Current Microbiology and Applied Sciences, 10(6), 811–817. https://doi.org/10.20546/ijcmas.2021.1006.086
Malgwi, D. W., Adamu, H. M., Boryo, D. E. A., & Oguike, R. S. (2024). Phytochemical profile and biological activities of Piliostigma thonningii leaf extract: Antioxidant and anti-inflammatory properties. American Journal of Applied Chemistry, 12(5), 95–104. https://doi.org/10.11648/j.ajac.20241205.11
Misra, A., Mishra, P., Kumar, B., Shukla, P. K., Kumar, M., Singh, S. P., Sundaresan, V., Adhikari, D., Agrawal, P. K., Barik, S. K., & Srivastava, S. (2021). Chemodiversity and molecular variability in the natural populations (India) of Gloriosa superba L. and correlation with eco-geographical factors for the identification of elite chemotype(s). Fitoterapia, 150, 104831. https://doi.org/10.1016/j.fitote.2021.104831
Munteanu, I. G., & Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences, 22(7), 3380. https://doi.org/10.3390/ijms22073380
Pati, M., & Nandi, A. K. (2024). Study of estimation and variation of alpha-amylase content among individuals of Suaeda maritima (L.) Dumort. growing along the south-east coast of India. Journal of Stress Physiology and Biochemistry, 20(3), 186–194.
Ramadwa, T. E., & Meddows-Taylor, S. (2023). Traditional uses, pharmacological activities, and phytochemical analysis of Diospyros mespiliformis Hochst. ex A. DC (Ebenaceae): A review. Molecules, 28(23), 7759. https://doi.org/10.3390/molecules28237759
Shaikh, J. R., & Patil, M. K. (2020). Qualitative tests for preliminary phytochemical screening: An overview. International Journal of Chemical Studies, 8(2), 603–608. https://doi.org/10.22271/chemi.2020.v8.i21.8834
Shamsuddeen, I. (2023). Phytochemical analysis of Diospyros mespiliformis (African ebony) leaves and bark. Direct Research Journal of Biology and Biotechnology, 9(7), 74–78. https://doi.org/10.26765/DRJBB64290157
Sies, H., & Jones, D. P. (2020). Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews Molecular Cell Biology, 21(7), 363–383. https://doi.org/10.1038/s41580-020-0230-3
South African National Biodiversity Institute. (2023). Diospyros mespiliformis. PlantZAfrica. https://pza.sanbi.org/diospyros-mespiliformis
Viet, T. D., Xuan, T. D., & Anh, L. H. (2021). α-Amyrin and β-amyrin isolated from Celastrus hindsii leaves and their antioxidant, anti-xanthine oxidase, and anti-tyrosinase potentials. Molecules, 26(23), 7248. https://doi.org/10.3390/molecules26237248
World Health Organization. (2023). WHO global report on traditional and complementary medicine. https://www.who.int/publications/i/item/9789240043379
Xu, X., Liu, A., Hu, S., Ares, I., Martínez-Larrañaga, M.-R., Wang, X., Martínez, M., Anadón, A., & Martínez, M.-A. (2021). Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chemistry, 353, 129488. https://doi.org/10.1016/j.foodchem.2021.129488