Peer Reviewed Open Access Journal
ISSN: 3048-5401
Submit ManuscriptMolecular docking is a structure-based computational approach that predicts the binding location and affinity of ligands for their targets, aiding in drug discovery and development. determined by platform compatibility, processing resources, and research requirements. While it speeds up and lowers the cost of drug development, issues including protein flexibility, scoring function constraints, and prediction accuracy persist. Hybrid modeling, molecular dynamics simulations, and consensus scoring are all examples of advances that improve dependability. As computational tools and structural biology advances, molecular docking is projected to become more accurate, allowing for quicker and more efficient drug creation. Cloud computing, GPU acceleration, and high-throughput virtual screening now allow the analysis of vast chemical libraries in reduced time frames. Docking has been successfully applied in the repurposing of approved drugs, the design of covalent inhibitors, and the exploration of allosteric modulators. However, persistent challenges such as limitations in scoring functions, treatment of solvent effects, and conformational variability necessitate further methodological refinement. This review summarizes the principles, applications, and recent technological advancements in molecular docking, highlighting its evolving role in bridging computational predictions with experimental validation and accelerating the drug development pipeline.
AI and machine learning, drug development, drug discovery, lead optimization, molecular docking
Abdalfattah, S., Knorz, C., Ayoobi, A., Omer, E. A., Rosellini, M., Riedl, M., ... & Efferth, T. (2024). Identification of antagonistic action of pyrrolizidine alkaloids in muscarinic acetylcholine receptor M1 by computational target prediction analysis. Pharmaceuticals, 17(1), 80.
Adelusi, T. I., Oyedele, A. Q. K., Boyenle, I. D., Ogunlana, A. T., Adeyemi, R. O., Ukachi, C. D., ... & Abdul-Hammed, M. (2022). Molecular modeling in drug discovery. Informatics in Medicine Unlocked, 29, 100880.
Agu, P. C., Afiukwa, C. A., Orji, O. U., Ezeh, E. M., Ofoke, I. H., Ogbu, C. O., ... & Aja, P. M. (2023). Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Scientific reports, 13(1), 13398.
Aguiar, C., & Camps, I. (2024). Molecular Docking in Drug Discovery: Techniques, Applications, and Advancements.
Ajjarapu, S. M., Tiwari, A., Ramteke, P. W., Singh, D. B., & Kumar, S. (2022). Ligand-based drug designing. In Bioinformatics (pp. 233-252). Academic Press.
Balan, B., Dhaulaniya, A. S., Varma, D. A., Sodhi, K. K., Kumar, M., Tiwari, M., & Singh, D. K. (2021). Microbial biofilm ecology, in silico study of quorum sensing receptor-ligand interactions and biofilm mediated bioremediation. Archives of Microbiology, 203(1), 13-30.
Bender, B. J., Gahbauer, S., Luttens, A., Lyu, J., Webb, C. M., Stein, R. M., ... & Shoichet, B. K. (2021). A practical guide to large-scale docking. Nature protocols, 16(10), 4799-4832.
Budipramana, K., & Sangande, F. (2022). Molecular docking-based virtual screening: Challenges in hits identification for Anti-SARS-CoV-2 activity. Pharmacia, 69(4), 1047-1056.
Bugnon, M., Röhrig, U. F., Goullieux, M., Perez, M. A., Daina, A., Michielin, O., & Zoete, V. (2024). SwissDock 2024: major enhancements for small-molecule docking with Attracting Cavities and AutoDock Vina. Nucleic acids research, 52(W1), W324-W332.
Cavasotto, C. N., & Abagyan, R. A. (2004). Protein flexibility in ligand docking and virtual screening to protein kinases. Journal of molecular biology, 337(1), 209-225.
Chaudhry, H., Schleip, R., Ji, Z., Bukiet, B., Maney, M., & Findley, T. (2008). Three-dimensional mathematical model for deformation of human fasciae in manual therapy. Journal of Osteopathic Medicine, 108(8), 379-390.
Chu, Z.-Y., & Zi, X.-J. (2024). Network pharmacology, single gene survival analysis and molecular docking to study the mechanism of Sotetsuflavone in the treatment of pancreatic cancer. Pharmacological Research-Reports, 2, 100010.
Dhudum, R., Ganeshpurkar, A., & Pawar, A. (2024). Revolutionizing drug discovery: a comprehensive review of AI applications. Drugs and Drug Candidates, 3(1), 148-171.
Doytchinova, I. (2022). Drug Design—Past, Present, Future. Molecules, 27(5), 1496. https://www.mdpi.com/1420-3049/27/5/1496.
Gayathiri, E., Prakash, P., Kumaravel, P., Jayaprakash, J., Ragunathan, M. G., Sankar, S., ... & Govindasamy, R. (2023). Computational approaches for modeling and structural design of biological systems: A comprehensive review. Progress in Biophysics and Molecular Biology, 185, 17-32.
Gentile, F., Yaacoub, J. C., Gleave, J., Fernandez, M., Ton, A.-T., Ban, F., ... & Cherkasov, A. (2022). Artificial intelligence–enabled virtual screening of ultra-large chemical libraries with deep docking. Nature Protocols, 17(3), 672-697.
Grassmann, F., Mälarstig, A., Dahl, L., Bendes, A., Dale, M., Thomas, C. E., ... & Czene, K. (2024). The impact of circulating protein levels identified by affinity proteomics on short-term, overall breast cancer risk. British Journal of Cancer, 130(4), 620-627.
Guo, Z., Liu, J., Wang, Y., Chen, M., Wang, D., Xu, D., & Cheng, J. (2024). Diffusion models in bioinformatics and computational biology. Nature reviews bioengineering, 2(2), 136-154.
Gupta, R., Srivastava, D., Sahu, M., Tiwari, S., Ambasta, R. K., & Kumar, P. (2021). Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Molecular diversity, 25(3), 1315-1360.
Halperin, I., Ma, B., Wolfson, H., & Nussinov, R. (2002). Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins: Structure, Function, and Bioinformatics, 47(4), 409-443.
Holmes, J., Liu, Z., Zhang, L., Ding, Y., Sio, T. T., McGee, L. A., ... & Liu, W. (2023). Evaluating large language models on a highly-specialized topic, radiation oncology physics. Frontiers in Oncology, 13, 1219326.
Ibrahim, H., Liu, F., Asim, R., Battu, B., Benabderrahmane, S., Alhafni, B., ... & Zaki, Y. (2023). Perception, performance, and detectability of conversational artificial intelligence across 32 university courses. Scientific reports, 13(1), 12187.
Kaczor, K., Gerula‐Szymańska, A., Smektała, T., Safranow, K., Lewusz, K., & Nowicka, A. (2018). Effects of different etching modes on the nanoleakage of universal adhesives: A systematic review and meta‐analysis. Journal of Esthetic and Restorative Dentistry, 30(4), 287-298.
Kumar, A., Kini, S. G., & Rathi, E. (2021). A recent appraisal of artificial intelligence and in silico ADMET prediction in the early stages of drug discovery. Mini Reviews in Medicinal Chemistry, 21(18), 2788-2800.
Kumar, S., Flinn, I., Richardson, P. G., Hari, P., Callander, N., Noga, S. J., ... & Rajkumar, S. V. (2012). Randomized, multicenter, phase 2 study (EVOLUTION) of combinations of bortezomib, dexamethasone, cyclophosphamide, and lenalidomide in previously untreated multiple myeloma. Blood, The Journal of the American Society of Hematology, 119(19), 4375-4382.
Meli, R., Morris, G. M., & Biggin, P. C. (2022). Scoring functions for protein-ligand binding affinity prediction using structure-based deep learning: a review. Frontiers in bioinformatics, 2, 885983.
Mursal, M., Ahmad, M., Hussain, S., & Khan, M. F. (2024). Navigating the computational seas: a comprehensive overview of molecular docking software in drug discovery. Unravelling Molecular Docking-From Theory to Practice.
Murugan, N. A., Podobas, A., Gadioli, D., Vitali, E., Palermo, G., & Markidis, S. (2022). A review on parallel virtual screening softwares for high-performance computers. Pharmaceuticals, 15(1), 63.
Pereira, J. F. S., Bessa, C., Matos, P. & Jordan, P. (2025). Correction: Pereira et al. Pro‑Inflammatory Cytokines Trigger the Overexpression of Tumour‑Related Splice Variant RAC1B in Polarized Colorectal Cells. Cancers, 17(10), 1642.
Pojtanadithee, P., Isswanich, K., Buaban, K., Chamni, S., Wilasluck, P., Deetanya, P., ... & Rungrotmongkol, T. (2024). A combination of structure-based virtual screening and experimental strategies to identify the potency of caffeic acid ester derivatives as SARS-CoV-2 3CLpro inhibitor from an in-house database. Biophysical Chemistry, 304, 107125.
Raval, K., & Ganatra, T. (2022). Basics, types and applications of molecular docking: A review. IP International Journal of Comprehensive and Advanced Pharmacology, 7(1), 12-16.
Ritchie, A., Robertson, S., & Teufel, S. (2008). Comparing citation contexts for information retrieval. In Proceedings of the 17th ACM conference on Information and knowledge management (pp. 213-222).
Sahu, D., Rathor, L. S., Dwivedi, S. D., Shah, K., Chauhan, N. S., Singh, M. R., & Singh, D. (2024). A Review on Molecular Docking As an Interpretative Tool for Molecular Targets in Disease Management. ASSAY and Drug Development Technologies, 22(1), 40-50. https://doi.org/10.1089/adt.2023.060.
Stanzione, F., Giangreco, I., & Cole, J. C. (2021). Use of molecular docking computational tools in drug discovery. Progress in medicinal chemistry, 60, 273-343.
Surana, K. R., Ahire, E. D., Sonawane, V. N., & Talele, S. G. (2021). Biomolecular and molecular docking: A modern tool in drug discovery and virtual screening of natural products. In Applied Pharmaceutical Practice and Nutraceuticals (pp. 209-223). Apple Academic Press.
Tang, Z., Bai, Y., Fang, Q., Yuan, Y., Zeng, Q., Chen, S., Xu, T., Chen, J., Tan, L., Wang, C., Li, Q., Lin, J., Yang, Z., Wu, X., Shi, G., Wang, J., Yin, C., Guo, J., Liu, S., Peng, S., & Kuang, M. (2025). Spatial transcriptomics reveals tryptophan metabolism restricting maturation of intratumoral tertiary lymphoid structures. Cancer Cell, 43(6), 1025–1044.e14.
Tiwari, A., Adhikari, S., Kaya, D., Islam, M. A., Malla, B., Sherchan, S. P., ... & Pitkänen, T. (2023). Monkeypox outbreak: Wastewater and environmental surveillance perspective. Science of the total environment, 856, 159166.
Ugurlu, S. Y. (2024). Computational Methods in Drug Discovery and Development.
Vidal-Limon, A., Aguilar-Toalá, J. E., & Liceaga, A. M. (2022). Integration of molecular docking analysis and molecular dynamics simulations for studying food proteins and bioactive peptides. Journal of Agricultural and Food Chemistry, 70(4), 934-943.
Wen, W., Su, W., Tang, H., Le, W., Zhang, X., Zheng, Y., ... & Wang, H. (2020). Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell discovery, 6(1), 31.
Wilson III, D. M., Deacon, A. M., Duncton, M. A., Pellicena, P., Georgiadis, M. M., Yeh, A. P., Arvai, A. S., Moiani, D., Tainer, J. A., & Das, D. (2021). Fragment-and structure-based drug discovery for developing therapeutic agents targeting the DNA Damage Response. Progress in Biophysics and Molecular Biology, 163, 130-142.
Xu, L. D., Xu, E. L., & Li, L. (2018). Industry 4.0: state of the art and future trends. International journal of production research, 56(8), 2941-2962.
Yim, W. W., Abacha, A. B., Fu, Y., Sun, Z., Xia, F., Yetisgen-Yildiz, M., & Krallinger, M. (2024). Overview of the MEDIQA-M3G 2024 Shared Task on Multilingual Multimodal Medical Answer Generation. In Proceedings of the 6th Clinical Natural Language Processing Workshop (pp. 581-589).
Yoo, C., Zhou, Y., & Weng, Q. (2025). Mapping 10-m industrial lands across 1000+ global large cities, 2017–2023. Scientific Data, 12(1), 278.
Zhu, H., Zhang, Y., Li, W., & Huang, N. (2022). A comprehensive survey of prospective structure-based virtual screening for early drug discovery in the past fifteen years. International Journal of Molecular Sciences, 23(24), 15961.