The world is facing a pressing issue: an increasing population and a shrinking area under cultivation. However, it is unrealistic to increase food production and optimize energy production on existing land. The agrivoltaics system proves to be a panacea for integrating energy production with agriculture. Agrivoltaics is the concept of using the same land for both crop production and solar energy generation. It is defined as agricultural production, such as crop or livestock production, that occurs underneath or adjacent to solar panels. Through photovoltaics, it is possible to co-locate solar and agricultural power on the same land, providing benefits to both the solar and farming industries. This integrated approach enables the simultaneous production of food and electricity by effectively capturing solar radiation. The approach will allow us to address food security problems on the one hand and minimize our dependence on non-renewable sources on the other, thus paving the way for a sustainable environment.
agrivoltaics, food security, renewable energy, ecosystem services, SDGs, India
Abidin, M. A. Z., Mahyuddin, M. N., & Zainuri, M. A. A. M. (2023). Optimal efficient energy production by PV module tilt-orientation prediction without compromising crop-light demands in Agrivoltaic systems. IEEE Access, 11, 71557-71572.
Adeh, E. H., Good, S. P., Calaf, M., & Higgins, C. W. (2019). Solar PV power potential is greatest over croplands. Scientific reports, 9(1), 11442.
Al Mamun, M. A., Dargusch, P., Wadley, D., Zulkarnain, N. A., & Aziz, A. A. (2022). A review of research on agrivoltaic systems. Renewable and Sustainable Energy Reviews, 161, 112351.
Asa'a, S., Reher, T., Rongé, J., Diels, J., Poortmans, J., Radhakrishnan, H. S., ... & Daenen, M. (2024). A multidisciplinary view on agrivoltaics: Future of energy and agriculture. Renewable and Sustainable Energy Reviews, 200, 114515.
Barron-Gafford, G. A., Pavao-Zuckerman, M. A., Minor, R. L., Sutter, L. F., Barnett-Moreno, I., Blackett, D. T., ... & Macknick, J. E. (2019). Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nature Sustainability, 2(9), 848-855.
Braun, C., & Berwind, M. (2024). Agrivoltaics. Photovoltaic Solar Energy: From Fundamentals to Applications, 2, 475-489.
Collignon, A. C. (2025). The development and implementation of agrivoltaic systems internationally (Honors thesis, Colorado State University). University Honors Program. https://mountainscholar.org/bitstreams/95abf2a8-fd33-41b5-9dcf-7de718a4274a/download
FAO. (2021). Sustainable Development Goals: Life on Land. https://www.fao.org/sustainable-development-goals/en/
Feuerbacher, A., Herrmann, T., Neuenfeldt, S., Laub, M., & Gocht, A. (2022). Estimating the economics and adoption potential of agrivoltaics in Germany using a farm-level bottom-up approach. Renewable and Sustainable Energy Reviews, 168, 112784.
Ghasemi, S., & Sadeghkhani, I. (2025). Toward Sustainable Energy‐Agriculture Synergies: A Review of Agrivoltaics Systems for Modern Farming Practices. Solar RRL, 202500041.
Ghosh, A. (2023). Nexus between agriculture and photovoltaics (agrivoltaics, agriphotovoltaics) for sustainable development goal: A review. Solar Energy, 266, 112146. https://doi.org/10.1016/j.solener.2023.112146
Gnayem, N., Magadley, E., Haj-Yahya, A., Masalha, S., Kabha, R., Abasi, A., ... & Yehia, I. (2024). Examining the effect of different photovoltaic modules on cucumber crops in a greenhouse agrivoltaic system: A case study. Biosystems Engineering, 241, 83-94.
Goetzberger, A., & Zastrow, A. (1982). On the coexistence of solar-energy conversion and plant cultivation. International Journal of Solar Energy, 1(1), 55-69.
Hasan, M. T., Rejwana, Z., Islam, M., & Rahman, M. M. (2023, December). Shadow Length Impact on Inter-Row Spacing: Investigation for Agrivoltaic in Bangladesh. In 2023 10th IEEE International Conference on Power Systems (ICPS) (pp. 1-5). IEEE.
IISD. (2023). Agrivoltaics in India. International Institute for Sustainable Development. https://www.iisd.org/publications/report/agrivoltaics-in-india
Jain, P., Raina, G., Sinha, S., Malik, P., & Mathur, S. (2021). Agrovoltaics: Step towards sustainable energy-food combination. Bioresource Technology Reports, 15, 100766. https://doi.org/10.1016/j.biteb.2021.100766
Krishnan, A. (2022, March 17). The Better World: Why Farmers in Kenya are Growing Crops Under Solar Panels. The Better India. https://thebetterindia.com/279601/solar-energy-innovation-agriculture-kenya-india-farmers-renewable-energy/
Kumar J, C. R., & Majid, M. A. (2020). Renewable energy for sustainable development in India: current status, future prospects, challenges, employment, and investment opportunities. Energy, Sustainability and Society, 10(1), 2.
Maity, R., Kumarasamy, S., & Abdul Razzak, A. (2025). Solar agrivoltaics design: Critical factors and key considerations. Malaysian Journal of Sustainable Agriculture, 9(1), 16–20. https://doi.org/10.26480/mjsa.01.2025.16.20
Majumdar, D., & Pasqualetti, M. J. (2018). Dual use of agricultural land: Introducing ‘agrivoltaics’ in Phoenix Metropolitan Statistical Area, USA. Landscape and Urban Planning, 170, 150-168. https://doi.org/10.1016/j.landurbplan.2017.10.011
Marrou, H., Wery, J., Dufour, L., & Dupraz, C. (2013). Productivity and radiation use efficiency of lettuces grown in the partial shade of photovoltaic panels. European Journal of Agronomy, 44, 54-66. https://doi.org/10.1016/j.eja.2012.08.003
MNRE. (2024). Solar Energy Overview. Ministry of New and Renewable Energy. https://mnre.gov.in/solar-energy
Priscilla, A., Arjunan, R., & Sarangi, P. K. (2025). Exploring agrivoltaics—Concepts, impacts, challenges and future prospects with a focus on India's emergence. SSRN. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4768992
Ramos-Fuentes, I. A., Elamri, Y., Cheviron, B., Dejean, C., Belaud, G., & Fumey, D. (2023). Effects of shade and deficit irrigation on maize growth and development in fixed and dynamic AgriVoltaic systems. Agricultural Water Management, 280, 108187. https://doi.org/10.1016/j.agwat.2023.108187
Rösch, C., & Fakharizadehshirazi, E. (2024). The spatial socio-technical potential of agrivoltaics in Germany. Renewable and Sustainable Energy Reviews, 202, 114706.
Saand, A. S., Jamali, M. I., Koondhar, M. A., Kaloi, G. S., Albasha, L., Aoudia, M., & Touti, E. (2025). A comparative review: floating photovoltaic, agrivoltaics, and ground-mounted PV systems. IEEE Access, 13, 45853-45873.
Scarano, A., Curci, L. M., Semeraro, T., Calisi, A., Lenucci, M. S., Santino, A., ... & De Caroli, M. (2025). Agrivoltaics as a sustainable strategy to enhance food security under water scarcity. Horticulturae, 11(4), 401.
Shahsavari, A., & Akbari, M. (2018). Potential of solar energy in developing countries for reducing energy-related emissions. Renewable and Sustainable Energy Reviews, 90, 275-291. https://doi.org/10.1016/j.rser.2018.03.065
Time, A., Gomez‐Casanovas, N., Mwebaze, P., Apollon, W., Khanna, M., DeLucia, E. H., & Bernacchi, C. J. (2024). Conservation agrivoltaics for sustainable food‐energy production. Plants, People, Planet, 6(3), 558-569.
Trommsdorff, M., Dhal, I. S., Özdemir, Ö. E., Ketzer, D., Weinberger, N., & Rösch, C. (2021). Agrivoltaics: Solar power generation and food production. Solar Energy Advancements in Agriculture and Food Production Systems, 159-210. https://doi.org/10.1016/B978-0-323-89866-9.00012-2
Walston LJ, Barley T, Bhandari I, Campbell B, McCall J, Hartmann HM and Dolezal AG (2022) Opportunities for agrivoltaic systems to achieve synergistic food-energy-environmental needs and address sustainability goals. Front. Sustain. Food Syst. 6:932018. doi: 10.3389/fsufs.2022.932018
Willockx, B., Lavaert, C., & Cappelle, J. (2022). Geospatial assessment of elevated agrivoltaics on arable land in Europe to highlight the implications on design, land use and economic level. Energy Reports, 8, 8736-8751.
Yadav, I. (2025, July 9). A town in India is using solar panels to protect crops. One Earth. https://www.oneearth.org/town-in-india-using-solar-panels-to-protect-crops/
Zainol Abidin, M. A., Mahyuddin, M. N., & Mohd Zainuri, M. A. A. (2021). Solar photovoltaic architecture and agronomic management in agrivoltaic system: A review. Sustainability, 13(14), 7846.
Zhang, L., Gong, J., Yang, Z., Wu, X., Wang, W., Yang, C., ... & Bao, E. (2025). Evaluating the contribution of decreasing heights of photovoltaic panels on light environment and agricultural production in agrivoltaic systems. Journal of Cleaner Production, 495, 145091.
Zhang, W., Yue, Z., Ma, H., Gao, Y., Liu, W., Huang, X., ... & Zhang, X. (2024). Agricultural friendly single-axis dynamic agrivoltaics: Simulations, experiments and a large-scale application for Chinese solar greenhouses. Applied Energy, 374, 123891.