Journal of Innovative Agriculture, Volume 12, Issue 1 : 18-27 . Doi : 10.37446/jinagri/rsa/12.1.2025.18-27
Research Article
OPEN ACCESS | Published on : 31-Mar-2025

Genome-wide association study for composite performance index in rice (Oryza sativa L.)


  • Raveendran Muthurajan
  • Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore - 641003, India.

  • Williams Mohanavel
  • Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore - 641003, India.

  • Ameena Premnath
  • Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore - 641003, India.

  • Bharathi Ayyenar
  • Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore - 641003, India.

  • Veera Ranjani Rajagopalan
  • Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore - 641003, India.

  • Sudha Manickam
  • Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore - 641003, India.

Abstract

Background: A critical step to maximize the usefulness of genome-wide association studies (GWAS) in plant breeding is the identification and validation of candidate genes underlying genetic associations. Once strong candidates are identified, further validation helps confirm whether the gene truly influences the trait. This process strengthens confidence in marker-trait relationships and enables the development of more precise molecular markers or genomic prediction models for crop improvement.

Methods: Genome-wide association study (GWAS) was conducted on a panel of 100 genetically diverse rice genotypes to dissect the genetic architecture of the Composite Performance Index (CPI), a multivariate principal component score integrating all major agronomic traits. 

Results: Full annotation of all six significant SNPs revealed perfect convergence on four biologically coherent functional modules. Four reproducible quantitative loci (CPI-1, CPI-4, CPI-8 and CPI-11) were identified, explaining the major gradients in field performance. These loci encompass biologically coherent modules linked to energy metabolism, growth regulation, cell-wall integrity and dehydration response. Favourable alleles were located on chromosomes 8 and 11 contributing +1.12 and +1.38 CPI units, respectively. Unfavourable alleles on chromosomes 1 and 4 were associated with stress response and growth-defense trade-offs. The combined fixation of favourable haplotypes from CPI-8 and CPI-11 while purging unfavourable alleles from CPI-1 and CPI-4 predicted a +2.5 CPI gain representing the top 1% ideotype.

Conclusion: The two tightly linked SNPs on chromosome 8 (separated by only 1,069 bp) tag the identical haplotype and are therefore merged into a single locus (CPI-8). No additional loci reached genome-wide significance, confirming that CPI is controlled by a compact, high-impact genetic architecture amenable to rapid marker-assisted pyramiding. The compact genetic basis uncovered in this study provides a practical foundation for marker-assisted selection and genomic designing of high-performing rice varieties.

Keywords

rice, GWAS, COMPOSITE Performance Index (CPI), SNPs, genomic designing

References

  • Ashfaq, M., Rasheed, A., Zhu, R., Ali, M., Javed, M. A., Anwar, A., ... & Wu, X. (2023). Genome-wide association mapping for yield and yield-related traits in rice (Oryza sativa L.) using SNPs markers. Genes14(5), 1089.

    Badri, J., Padmashree, R., Anilkumar, C., Mamidi, A., Isetty, S. R., Swamy, A. V. S. R., & Sundaram, R. M. (2024). Genome-wide association studies for a comprehensive understanding of the genetic architecture of culm strength and yield traits in rice. Frontiers in Plant Science14, 1298083.

    Croce, R., & Van Amerongen, H. (2014). Natural strategies for photosynthetic light harvesting. Nature chemical biology10(7), 492-501.

    DiMario, R. J., Clayton, H., Mukherjee, A., Ludwig, M., & Moroney, J. V. (2017). Plant carbonic anhydrases: structures, locations, evolution, and physiological roles. Molecular plant10(1), 30-46.

    Greenwood, J. R., Lacorte-Apostol, V., Kroj, T., Padilla, J., Telebanco-Yanoria, M. J., Glaus, A. N., ... & Krattinger, S. G. (2024). Genome-wide association analysis uncovers rice blast resistance alleles of Ptr and Pia. Communications Biology7(1), 607.

    Hickman, R., Van Verk, M. C., Van Dijken, A. J., Mendes, M. P., Vroegop-Vos, I. A., Caarls, L., ... & Van Wees, S. C. (2017). Architecture and dynamics of the jasmonic acid gene regulatory network. The Plant Cell29(9), 2086-2105.

    Jadamba, C., Kim, J. M., Lee, H. J., Kim, E. G., & Yoo, S. -C. (2024). GWAS analysis to identify candidate genes related to phosphorus deficiency tolerance by GWAS in Rice. Plant Breeding and Biotechnology12, 82-97.

    Kadam, N. N., Jagadish, S. K., Struik, P. C., Van Der Linden, C. G., & Yin, X. (2019). Incorporating genome-wide association into eco-physiological simulation to identify markers for improving rice yields. Journal of Experimental Botany70(9), 2575-2586.

    Khan, M. S. (2014). The role of DREB transcription factors in abiotic stress tolerance of plants. Biotechnology & Biotechnological Equipment25(3), 2433-2442.

    Li, C., Xu, M., Cai, X., Han, Z., Si, J., & Chen, D. (2022). Jasmonate signaling pathway modulates plant defense, growth, and their trade-offs. International Journal of Molecular Sciences23(7), 3945.

    Li, F., Xie, J., Zhu, X., Wang, X., Zhao, Y., Ma, X., ... & Zhang, H. (2018). Genetic basis underlying correlations among growth duration and yield traits revealed by GWAS in rice (Oryza sativa L.). Frontiers in plant science9, 650.

    Nie, C., He, T., Zhang, W., Zhang, G., & Ma, X. (2018). Branched chain amino acids: beyond nutrition metabolism. International journal of molecular sciences19(4), 954.

    Padmashree, R., Barbadikar, K. M., Honnappa, Magar, N. D., Balakrishnan, D., Lokesha, R., ... & Sundaram, R. M. (2023). Genome-wide association studies in rice germplasm reveal significant genomic regions for root and yield-related traits under aerobic and irrigated conditions. Frontiers in Plant Science14, 1143853.

    Singh, K., & Chandra, A. (2021). DREBs-potential transcription factors involve in combating abiotic stress tolerance in plants. Biologia76(10), 3043-3055.

    Tyagi, A., Mir, Z. A., Almalki, M. A., Deshmukh, R., & Ali, S. (2024). Genomics-assisted breeding: a powerful breeding approach for improving plant growth and stress resilience. Agronomy14(6), 1128.

    Varshney, R. K., Terauchi, R., & McCouch, S. R. (2014). Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS biology12(6), e1001883.

    Xie, W., Ding, C., Hu, H., Dong, G., Zhang, G., Qian, Q., & Ren, D. (2022). Molecular events of rice AP2/ERF transcription factors. International Journal of Molecular Sciences23(19), 12013.

    Yano, K., Morinaka, Y., Wang, F., Huang, P., Takehara, S., Hirai, T., ... & Matsuoka, M. (2019). GWAS with principal component analysis identifies a gene comprehensively controlling rice architecture. Proceedings of the National Academy of Sciences, 116(42), 21262-21267.

    Zhong, H., Liu, S., Sun, T., Kong, W., Deng, X., Peng, Z., & Li, Y. (2021). Multi-locus genome-wide association studies for five yield-related traits in rice. BMC Plant Biology21(1), 364.