Journal of Ethnopharmacology and Toxicology, Volume 2, Issue 2 : 44-55. Doi : 10.37446/jet/rsa/2.2.2024.44-55
Research Article

OPEN ACCESS | Published on : 31-Dec-2024

Computational screening of phytochemicals as DPP-4 inhibitors for treating type 2 diabetes

  • Ananta Swargiary
  • Pharmacology and Bioinformatics Laboratory, Department of Zoology, Bodoland University, Kokrajhar, 783370, India.
  • Arup Swargiary
  • Pharmacology and Bioinformatics Laboratory, Department of Zoology, Bodoland University, Kokrajhar, 783370, India.
  • Beauty Narzary
  • Pharmacology and Bioinformatics Laboratory, Department of Zoology, Bodoland University, Kokrajhar, 783370, India.
  • Kalyan Dey
  • Department of Physics, Bodoland University, Kokrajhar, 783370, India.
  • Dulur Brahma
  • Pharmacology and Bioinformatics Laboratory, Department of Zoology, Bodoland University, Kokrajhar, 783370, India

Abstract

Dipeptidyl peptidase-4 (DPP4) is an enzyme responsible for degrading incretin hormones, which are key regulators of insulin secretion and blood glucose levels. Inhibition of DPP4 prolongs incretin activity, thereby enhancing glycemic control and offering therapeutic benefits in the management of Type 2 diabetes mellitus (T2DM). Although synthetic DPP4 inhibitors are commonly used, plant-based compounds present a promising and potentially safer alternative. This study aimed to evaluate the DPP4 inhibitory potential of plant-derived compounds through in silico approaches, including molecular docking, molecular dynamics (MD) simulations, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis. Among the screened compounds, Apigenin 7-O-methylglucuronide, a bioactive molecule, exhibited a higher binding affinity to DPP4 (-9.1 kcal/mol) compared to sitagliptin (-8.43 kcal/mol), a standard DPP4 inhibitor. Furthermore, MD simulations over 100 ns demonstrated greater stability of the Apigenin 7-O-methylglucuronide–DPP4 complex relative to the sitagliptin–DPP4 complex. ADMET profiling revealed favorable pharmacokinetic properties, including high oral bioavailability and minimal inhibition of cytochrome P450 enzymes. These findings underscore the potential of Apigenin 7-O-methylglucuronide as a natural DPP4 inhibitor and support its further investigation as a candidate for alternative T2DM therapies.

Keywords

Dipeptidyl peptidase-4 inhibitor, apigenin 7-O-methylglucuronide, molecular docking, molecular dynamics simulation, type 2 diabetes

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX1, 19-25.

    Afzal, M., Kazmi, I., & Mohsin, N. (2022) Flavonoids as potential inhibitors of metabolic disorders: A mechanistic review. Biomedicine & Pharmacotherapy, 147, 112580.

    Akinyede, K. A., Adewale, O. S., & Ibrahim, M. A. (2023) Computational approaches in the identification of novel DPP4 inhibitors: A review of recent advances. Journal of Biomolecular Structure and Dynamics, 41(5), 1125-1140.

    Alam, U., Asghar, O., Azmi, S. & Malik, R. A. (2014) General aspects of diabetes mellitus. Handbook of Clinical Neurology, 126, 211-222.

    Alberti, K. G., Zimmet, P. & Shaw, J. (2005) The metabolic syndrome-a new worldwide definition.  Lancet, 366, 1059-1062.

    Al-Saleh, Y., Sabico, S., Al-Furqani, A., Jayyousi, A., Alromaihi, D., Ba-Essa, E., Alawadi, F., Alkaabi, J., Hassanien, M., Al-Sifri, S., Seham, S., Alessa, T. & Al-Daghri, N. M. (2021) Sulfonylureas in the current practice of type 2 diabetes management: are they all the same? Consensus from the Gulf Cooperation Council (GCC) countries advisory board on sulfonylureas. Diabetes Therapy12(8), 2115-2132

    American Diabetes Association. (2014) Diagnosis and classification of diabetes mellitus. Diabetes care, 37(Supplement_1), S81-90.

    Bhullar, K. S., Lassalle-Claux, G., & Wu, J. (2021) Bioactive flavonoids as dipeptidyl peptidase IV inhibitors: Therapeutic potential in diabetes management. European Journal of Pharmacology, 911, 174583.

    Cheng, H., Lin, X., & Wang, J. (2023) Solubility and permeability of flavonoids: Implications for bioavailability and pharmacokinetics. Molecular Pharmaceutics, 20(3), 1589-1603.

    Das, P., Jha, R. K., & Mohapatra, S. (2022) Molecular docking and MM/PBSA studies of flavonoids as potential inhibitors of DPP4. Computational Biology and Chemistry, 102, 107732.

    Deacon, C. F. (2020) Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus. Nature Reviews Endocrinology16(11), 642-653Y.

    Doupis, J. & Veves, A. (2008) DPP4 Inhibitors: a new approach in diabetes treatment. Advance Therapy, 25, 627–643.

    Hospital, A., Goñi, J. R., Orozco, M., & Gelpí, J. L. (2015) Molecular dynamics simulations: Advances and applications. Advances in Protein Chemistry and Structural Biology, 100, 77-92.

    Hu, F. B., Manson, J. E., Stampfer, M. J., Colditz, G., Liu, S., Solomon, C. G., & Willett, W. C. (2001) Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. New England journal of medicine345(11), 790-797.

    Jakubec, D., Skoda, P., Krivak, R., Novotny, M., & Hoksza, D. (2022) PrankWeb 3: Accelerated ligand-binding site predictions for experimental and modelled protein structures. Nucleic Acids Research, 50(W1), W593–W597.

    Kar, S., & Roy, K. (2021) Advances in bioinformatics and computational drug discovery approaches for diabetes mellitus. Computational Biology and Chemistry, 94, 107540.

    Khan, C. R. (1994) Insulin action, diabetogenes, and the cause of type II diabetes. Daibetes, 43(8), 1066-1085.

    Kharroubi, A.T. & Darwish, H. M. (2015) Diabetes mellitus: The epidemic of the century. World journal of diabetes, 6(6), 850.

    Kumar, A., Srivastava, A., & Sharma, R. (2021) Molecular insights into flavonoid-DPP4 interactions: A computational approach. Journal of Biomolecular Structure and Dynamics, 39(8), 2991-3005.

    Kumar, A., Srivastava, A., & Sharma, R. (2021) Molecular insights into flavonoid-DPP4 interactions: A computational approach. Journal of Biomolecular Structure and Dynamics, 39(8), 2991-3005.

    Kumari, R., Kumar, R., & Lynn, A. (2014) g_mmpbsa-A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962.

    Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341.

    Meng, X., Zhang, J., & Chen, Y. (2023) Plant-derived polyphenols as DPP4 inhibitors: A structure-activity perspective. Phytomedicine, 110, 154614.

    O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T. & Hutchison, G. R.  (2011) Open babel chemical toolbox. Journal of Cheminformatics, 3(1), 33.

    Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004) UCSF Chimera: A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.

    Pires, D. E. V., Blundell, T. L. & Ascher, D. B. (2015) pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066-4072.

    Powers, A. C. (2008) Diabetes Mellitus. Harrison’s Principles of Internal MedicineII (17), 2275-2304.

    Pradeepa, B., Ramesh, N., & Kumari, S. (2023) In silico screening of flavonoids for DPP4 inhibition: A computational approach. International Journal of Biological Macromolecules, 205, 196-210.

    Robertson, R. P. (1995) Antagonist: diabetes and insulin resistance--philosophy, science, and the multiplier hypothesis. Journal of Laboratory and Clinical Medicine125(5), 560-564.

    Sun, H., Saeedi, P., & Karuranga, S. (2022) Global diabetes prevalence estimates for 2021 and projections for 2045: IDF Diabetes Atlas update. Diabetes Research and Clinical Practice, 183, 109119.

    Swargiary, A., Daimari, M., Swargiary, A., Biswas, A., Brahma, D. & Singha, H. (2024) Identification of phytocompounds as potent inhibitors of sodium/glucose cotransporter-2 leading to diabetes treatment. Journal of Biomolecular Structure and Dynamics, 1-14.

    Swinnen, S. G., Hoekstra, J. B. & DeVries, J. H. (2009) Insulin therapy for type 2 diabetes. Diabetes care32(Suppl 2), S253.

    Tanaka, T., Takahashi, T., & Shimizu, Y. (2023) Structure-activity relationship studies of flavonoids as DPP4 inhibitors. Journal of Natural Products, 86(2), 412-428.

    Trott, O., & Olson, A. J. (2010) AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.

    Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021) gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. Journal of chemical theory and computation17(10), 6281-6291.

    Velan, A., & Hoda, M. (2021) In-silico comparison of inhibition of wild and drug-resistant haemonchus contortus b-tubulin isotype-1 by glycyrrhetinic acid, thymol, and albendazole interactions. Journal of Parasitic Diseases: Official Organ of the Indian Society for Parasitology, 45(1), 24–34.

    Verma, R., Singh, S., & Yadav, M. (2022) Computational pharmacokinetics and ADMET profiling of flavonoids as DPP4 inhibitors. Chemico-Biological Interactions, 365, 110014.

    Vistoli, G., Pedretti, A., & Testa, B. (2020) Assessing drug-likeness: Lipophilicity, solubility, and permeability. Future Medicinal Chemistry, 12(10), 813-828.

    Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., & Cao, D. 2021 ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research49(W1), W5-W14

    Xu, L., Wu, J., & Zhao, W. (2019) Stability and interaction mechanisms of polyphenol-protein complexes: A molecular dynamics study. Food Chemistry, 293, 328-337.

    Yang, Y., Shi, C. Y., Xie, J., Dai, J. H., He, S. L., & Tian, Y. (2020) Identification of potential dipeptidyl peptidase (DPP)-IV inhibitors among Moringa oleifera phytochemicals by virtual screening, molecular docking analysis, ADME/T-based prediction, and in vitro analyses. Molecules25(1), 189.

    Zhao, H., Song, L., & Li, Z. (2020) Flavonoids as potential inhibitors of α-glucosidase and DPP4: Implications for diabetes therapy. European Journal of Medicinal Chemistry, 198, 112402.

    Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011) SwissParam, a fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359–2368.